Feeds:
Posts
Comments

Posts Tagged ‘Wunderkreis’

The Babylons are surely related to the widespread Troy Towns of the European North. However, they look a little bit different.
Directly after the entrance there is a bifurcation and therefore it is possible to go on in two directions. And then often there is no real middle, but rather you are headed back in a double spiral.

The Troy Town of Visby (Gotland Island, Sweden)

The Troy Town of Visby (Gotland Island, Sweden), Source: Ernst Krause, Die Trojaburgen Nordeuropas, 1893, fig. 1, p. 4

However, how could they have developed?
Numerous stone labyrinths have survived down to the present day in Fennoscandia. The Babylons are to be found particularly in the eastern area, from Finland up to the Russian Kola Peninsula. Often they are situated near the coast and on islands. The natives of Northern Europe, the Sami, settled here. It is possible that the Babylons deal with the traditional Sami religion.
They have presumably originated from the 13th century on until our times. And they were built in the same way: With stones fist-sized to head-sized laid down on the ground.

However, why do the Babylons look different and do not follow the well-known seed pattern with cross, angles and four dots? Much Scandinavian Troy Towns have eleven circuits and have been laid after the enlarged seed pattern.

The 11-circuit Cretan (Classical) labyrinth with the seed pattern of the cross, the four double angles and the four dots

The 11-circuit Cretan (Classical) labyrinth with the seed pattern of the cross, the four double angles and the four dots, on the right in a round shape

Thereby divergences and variations appeared. This can happen quite easily through this construction method.
Thus there are Swedish Troy Towns with the open cross which enables to take two directions to reach the middle, and to organise a race, e.g. This is why these also often are called “Jungfrudans” or “Jungfruringen”.

9-circuit stone labyrinth (Jungfruringen) at Köpmanholm (Sweden)

9-circuit stone labyrinth (Jungfruringen) at Köpmanholm (Sweden), Source: © John Kraft, Die Göttin im Labyrinth (1997), fig. 7, p. 26 (German edition)

In the seed pattern for this labyrinth double angles only were used in the lower area. So we have 9 circuits.

Here the layout for a 11-circuit labyrinth:

The 11-circuit Cretan (Classical) labyrinth, on the right with open cross

The 11-circuit Cretan (Classical) labyrinth, on the right with open cross

In the report of Budovskiy I found a graphics (from 1973?) by Prof. Kuratov who has carried out a division of labyrinths and wanted probably show how the Babylon developed (see the sketched line in the graphics).

The table of Prof. Kuratov

The table of Prof. Kuratov

In the first column a sort of principle is to be seen. As first the whole Cretan labyrinth. In the second the left-handed spiral, in the third the right-handed spiral, then the double spiral and below circles.
In row Ia we see the Cretan type in different variations.
In row Ib the open cross and a decreasing middle.
In row II a right-handed spiral and the faulty stone setting discovered by Karl Ernst von Baer (1792 – 1876) in 1838 on the island of Wiehr.
In row III the Babylon with the double spiral.
In row IV some multiple-arm labyrinths which remind of the medieval labyrinths.

The open cross occurs several times under the Scandinavian labyrinths. Besides, the empty middle sometimes becomes smaller and then even slides under the two upper turning points. Finally, it is only indicated and then left out completely.

The drawing of John Kraft shows this:

The Troy Town of Nisseviken (Sweden)

The Troy Town of Nisseviken (Sweden), Source: graphic by © John Kraft in Gotländskt Arkiv 1983 on Gotlands trojeborgar, p. 87

I have found in a report about the Babylons on WeirdRussia, beside numerous photos, also this graphic :

Stone setting on the Bolshoi Zayatsky Island

Stone setting on the Bolshoi Zayatsky Island

The middle exists next to nothing. It is rather a niche or a widening of the way. In this area small stone heaps are sometimes stacked up. Should they show the gate to the underworld or the belly of the snake? The ends of the boundary lines are thickened. This is quite easy to make with some more stones.
The labyrinth has changed its meaning, with this its appearance and became the walk-through labyrinth.

Here the layout in geometrically correct form:

 

Babylon Solovki

Babylon Solovki

Presumably most of the Babylons correspond to this shape.

On this photo one can recognise very well the alignment.

There is a graphic with a little “rounder” double spiral in the table of Prof. Kuratov and in Vinogradov’s report which I have still shown in my last post (see below).

There are  obviously some among the Finnish stone settings which look rather so.

Graphics of a Babylon according to Vinogradov

Graphics of a Babylon according to Vinogradov

According to most of the photos the Babylons doesn’t look exactly like this. The entrance is narrower and has a short straight piece.

Actually, one must consider them as a Wunderkreis. Even if they don’t have such a perfect double spiral like the Zeiden Wunderkreis. The Wunderkreise of Kaufbeuren or Eberswalde matches more likely the Babylons.

How could one call this type? In the last post I had suggested: Babylonian Wunderkreis. However, now I tend rather to Sami Wunderkreis because it developed in the cultural area of the Sami and probably was used in the cult of the dead.

Related Posts

Further Links

Read Full Post »

According to Wikipedia there are in all about 35 labyrinths in the Solovetsky Islands in the Onega Bay of the White Sea in the  Arkhangelsk Oblast (Russia), about 500 km to the north of St. Petersburg and 150 km to the south of the polar circle.

The Labyrinth on the Bolshoy Solovetsky Island

The Labyrinth on the Bolshoy Solovetsky Island, Source: Wikipedia, Photo © Vitold Muratov 2013

How old are they, who has built them, what was the purpose? There are many speculations about that (see the Further Links below). I do not want to take part in it.
I only want to find out how they look like, which type of labyrinth they are. I have found enough indications. There are several photos which reveal a part of the labyrinths quite well, unfortunately, not completely.

On the Internet I have found the following graphics from a book published in 1927 by Nikolai Vinogradov (historian, ethnologist and folklorist, 1876 – 1938).

Graphics of a stone setting

Graphics of a stone setting

In Hermann Kern’s book “Labyrinths” I have found the photo of a petroglyph on the island Skarv in the Stockholm archipelago (Sweden), presumably from the 18th/19th century.

Petroglyph on the Skarv Island

Petroglyph on the Skarv Island, Source: Hermann Kern, Labyrinthe, 1982, fig. 583 (German edition); Photo: Bo Stiernström, 1976

Compared to the graphics above the labyrinth is mirrored and the double spiral has a circuit less.

The labyrinths, called Babylons in the local dialect, have been made in the same way as the Scandinavian Troy Towns, probably at the same time and presumably served similar purposes.
Nevertheless, the layout is completely different. There are none of the well-known 11- or 15-circuit Cretan labyrinths which can be made from the enlarged seed pattern.

They belong to the walk-through labyrinths. These have a double spiral in the middle and labyrinthine circuits round two turning points. They can have two accesses or only one, however, with a bifurcation.

The hints, the Babylons could be seen as part of a cult of the dead and would show two snakes winding into each other, well explain the figure. They could also have been put on as a sort of piece of art.

There appear two spirals interlocking into each other. In a geometrical figure with semicircles around different centres they can be constructed as follows:

Blue and red spirals

Blue and red spirals

Both lines can be drawn well in one go and freehand: You will begin in the middle, turn to the right, circling once around, then in a larger turn outwardly from the right side to the left, from there inwards back to the right side. The red line ends her, the blue returns one more time to the left, circling inwards.
When you know how to draw each line, try to draw one in the other. Best begin with the blue line and leave enough space between the lines. Then put the red line in between.
That sounds complex, and it is. But best of all try several times with a pencil on a sheet of paper.

The result should look like thus:

The red spiral inside the blue one

The red spiral inside the blue one

For a labyrinth laid of stones these semicircular or elliptical curves can relatively simple be realised.

Best of all one starts in the middle. There one can arrange most easily the thickening of the ends and the interpieces. Then the remaining lines follow in steady distances.

Step 1 and 2

Step 1 and 2

One makes three semicircles downwards (step 1), and four semicircles upwards (step 2). Thus the double spiral in the middle is built.

Step 3 and 4

Step 3 and 4

Then I add five semicircles on top (step 3). There are five free ends on the left side, and seven on the right. These I elongate to the sloped line at right and at left (step 4).

Step 5 and 6

Step 5 and 6

In step 5 I connect both outermost free ends on the left and on the right side so with each other that in the middle a gap remains for the entrance. In step 6 the remaining free ends are connected parallel to the curves just made before. The innermost free end on each side will be the turning point.

It is noteworthy that the limitation lines do not overlap like they doe in the Cretan labyrinth. In spite of the bifurcation the way through the whole figure is unequivocal and follows the typical “labyrinthine” rhythm.

The construction elements

The construction elements

Even if the Babylons were not put on so geometrically precisely, nevertheless, these geometrical features show the essential internal structure and let them count to the Wunderkreise. I would like to call them Babylonian Wunderkreise to discern them from the Wunderkreise with two accesses side by side like we see that in the Zeidner Wunderkreis.

The Babylons are related to the Babylonian Labyrinths through the double spiral in the middle and the unequivocal way that leads to it, even if there are two opposite entrances.

Related Posts

Further Links

Read Full Post »

In part 1 (see Related Post below) about the simplified seed pattern I only have spoken of the enlargement of labyrinths.

The seed pattern

But of course the number of circuits also can be reduced by this way. This is possible for all labyrinths built from this seed pattern, as well as for all containing this pattern. I would like to call them compounded labyrinths.

For me this are the Indian Labyrinth, the Baltic Wheel and the Wunderkreis. They all have only two turning points, however, the middle is formed in each case differently.
The Indian Labyrinth (Chakra Vyuha) contains a spiral, the Baltic Wheel has a big empty middle and a second access, the Wunderkreis contains a double spiral and also has the second access.

Here the Indian Labyrinth which can be generated through a seed pattern contained in a triangle:

The Indian Labyrinth

The Indian Labyrinth

The Indian Labyrinth with two more circuits:

The enlarged Indian Labyrinth

The enlarged Indian Labyrinth

Here the Baltic Wheel. The middle section is constructed in a special way. But the circuits round the two turning points can be increased or decreased in pairs.

The Baltic Wheel

The Baltic Wheel

The Baltic Wheel with two less circuits:

The downscaled Baltic Wheel

The downscaled Baltic Wheel

The Wunderkreis has a double spiral in the middle section. The double spiral can have more or less windings (not shown here). But the typically “labyrinthine” circuits round the two turning points can be influenced as mentioned above.

The Wunderkreis

The Wunderkreis

The Wunderkreis with two less circuits:

The downscaled Wunderkreis

The downscaled Wunderkreis

In the quoted statements I would like to show that there is a “technology” through that one can influence the size of a labyrinth.

Related Post

Read Full Post »

This is what a Baltic Wheel looks like:

The Baltic Wheel

The Baltic Wheel

It has circuits which run primarily about two turning points. The middle is empty, however, it has a second, short way to leave it directly. Thereby we also have two entries which are separated by a spoon-like formed part.
Historical examples are very rare. In Germany there is the Rad in der Eilenriede at the town park of Hannover. Otherwise we only know this type from literature.

In the previous articles I have dealt with the Wunderkreis. Besides, a certain resemblance between both these types has also struck me. Though both have two entries they are still different types. In what way are they different now?

The Wunderkreis

The Wunderkreis

The labyrinthine circuits are disposed around turning points which are arranged in a triangle. In the middle we have a double spiral (the circuits A, B, C) through which we leave the Wunderkreis. We have a walk-through labyrinth lying ahead of us.

The Baltic Wheel has a big, empty middle and consequently contains no double spiral. However, there is also the second access (or exit). If I leave out the circuits for the double spiral, I shall nearly get the  Baltic Wheel.

The intermediate stage

The intermediate stage

The remaining circuits are the same. Also the path sequence is the same. This shows the close relationship between the two labyrinth types.

Now I add a middle section formed from arcs between the two entrances and will thus receive a complete Baltic Wheel.

The Baltic Wheel

The Baltic Wheel

The Baltic Wheel can exist of a varied number of circuits. These can be added the same way as in the Wunderkreis (see related posts below).

Other design elements can also be added, such as an additional circuit around the whole Baltic Wheel.

Some years ago I had already published construction instructions for the Baltic Wheel. It looked a little bit different. The construction developed now seems easier to me and I like it better.

If I have fixed the number of the circuits for a Baltic Wheel, I can also begin with the base line of the triangle (between M3 and M4) and then determine the centre M1.

The construction has a dimension between axes of 1 m and therefore allows to scale it easier.

The drawing

The drawing

Here as a PDF file to look at, to print or to copy.

Related Posts

Read Full Post »

The previous post was more concerned with the geometry and the mathematically correct construction of the Wunderkreis in general.

Here is an example of how you can make it less theoretically. Denny Dyke from Circles in the Sand often creates double spirals and the Wunderkreis in his Dream Fields on the beach of Oregon. Denny Dyke has kindly shown me his method.
In the following photos it is explained.

Freehand he scratches the lines in the sand. Hence, the way runs between the lines. The double spiral has three arcs, the surrounding labyrinth has five circuits.

Step 1

Step 1

Denny begins with the lower part of the double spiral and draws three semicircles. On the left he adds two lines and the turning point, on the right there are three lines and the turning point (step 1).

Step 2

Step 2

Now he scratches three semicircles for the upper part of the double spiral. The first semicircle begins in the middle of the innermost lower semicircle (step 2).

Step 3

Step 3

All the other curves are drawn in parallel and equal distance to this arc by connecting all free ends of the existing lines and the turning points. Just the way we do it in the Classical labyrinth. We begin on top and draw four lines on the left side around the double spiral to the right side (step 3).

Step 4

Step 4

In the same way the two free lines below are connected together (step 4). Having done this the Wunderkreis has quite been completed.

The open lower middle section contains the two entries of the Wunderkreis. On the left side we enter the labyrinthine circuits. On the right side we have the exit out of the double spiral.

The completed Wunderkreis

The completed Wunderkreis

Denny has marked both accesses and has separated them through the “shoehorn” known from the Baltic wheel.

Related Posts

Read Full Post »

A Wunderkreis is a double spiral, surrounded by a simple labyrinth with two turning points.

We begin in the centre with the double spiral. One  semicircle below and one semicircle above the horizontal line would suffice as a minimum. Many more semicircles could be added to enlarge the double spiral. Here we make three arcs which we name A, B and C. The lower ones are drawn around M1 as the centre, the upper ones are arranged around M2 as the centre and shifted to the right.

Step 1

Step 1

Then we add three arcs on the left side. They are drawn in a triangular sector around the midpoint M1. We number the circuits from the outside with 1, 2 and 3. Circuit 3 will finally form the entrance.
The turning and midpoint M3 for the lower semicircle lies concentric between the both external circuits 1 and 2.

Step 2

Step 2

Now we go to the right side. Here two arcs more than on the left side are necessary, that means a total of five. Again we number the circuits from the outside inwards from 1 to 5. The circuit 5 will later lead to the exit.
The turning point M4 lies concentric between the four circuits 1 to 4. In the lower middle section two semicircles are traced around that midpoint M4.

Step 3

Step 3

Now the upper semicircles are completed around the midpoint M2. There are four semicircles (and circuits) more on each side than at the beginning.

Step 4

Step 4

The Wunderkreis is usually entered through the labyrinthine circuits on circuit 3 and left through the double spiral on circuit 5. The path sequence then is as follows: 3-2-1-4-C-B-A-A-B-C-5.
The path sequence 3-2-1-4 forms the basis of the meander, as connoisseurs know, as in the Knossos labyrinth.


Now we choose more circuits and apply the abovementioned principles to the construction. Through that Wunderkreise with a varied number of circuits can be generated. We can add circuits to the double spiral one by one, to the labyrinth we have to do it in pairs.
On the right side two circuits more are necessary than on the left. The lower turning points (M3 and M4) must lie concentric between the even-numbered left or right circuits. In the following example we have 6 circuits on the left and 8 on the right side.

If we know how many circuits for a Wunderkreis we want, we can lay both lower turning points on a line and determine the middle for the double spiral (M1) in a triangle. Entrance and exit can also be arranged  side by side without any space.

Nevertheless we can begin, while marking out, with the definition of the middle M1 and also determine the adjustment of the main axis (vertical line). The remaining centres M3 and M4 can afterwards be fixed in that triangle.

The main dimensions

The main dimensions

Best of all we consider the measurements as units, so either “metre” or “yard” or “step width” or something similar. Then we can also scale all dimensions.
The smallest radius begins with 1 unit and then gradually grows by 1 from arc to arc. Then the biggest radius has 12 units. The boundary lines add themselves on 407 units, the whole way through the Wunderkreis reaches 362 units.

The completed Wunderkreis

The completed Wunderkreis

In this example the Wunderkreis has four circuits more than in the other at the top of the page and no space between entrance and exit. This area is formed quite differently in the historical Wunderkreise. Sometimes the paths are joined together, sometimes they run apart.

Related Posts

Read Full Post »

And vice versa: How to make a Wunderkreis from a Babylonian visceral labyrinth.

That’s possible, at least with the Babylonian Umma Labyrinth.

The essentials of a labyrinth ly in the course of the pathway expressed by the level sequence, not the external form or layout. More exactly Andreas calls this the pattern.

The Babylonian Umma Labyrinth

The Babylonian Umma Labyrinth

The Umma labyrinth has two turning points surrounded by two circuits each and a meander in the middle. The two entries ly outside. There is only one, unequivocal way through the labyrinth.

The Wunderkreis has a double spiral in the centre and two other turning points with arbitrarily many circuits. Besides, a side has a circuit more than the other. The entries are in the middle section.

A large Wunderkreis

A large Wunderkreis

In order to indicate the single developing steps I first transform a “completely developed” Wunderkreis into the smallest possible version.

It looks thus: A meander in the middle and two other turning points with a total of three circuits as to be seen in the labyrinth type Knossos.

The smallest Wunderkreis

The smallest Wunderkreis

To be able to compare this small Wunderkreis to the Umma labyrinth, I lay all centres (at the same time the ends of the boundary lines or the turning points) on a single line. Just as if I folded the triangle built from the turning points.

The compressed Wunderkreis

The compressed Wunderkreis

Both entries are here in the middle section, in the Umma labyrinth they are outside and side by side. Besides, there is one more circuit on the left side. Now I add one circuit to the figure and the entry will change to the outer side on the right as well.

One more circuit

One more circuit

I now turn the second entry to the left side. As a result, the two entries  point in different directions.

The two entries outside

The two entries outside

Hence, I turn the right entry completely to the outer side on the left beside the left entry. As I do that geometrically correct, two empty areas appear.

The two entries side by side

The two entries side by side

Now I extend both entry paths by a quarter rotation upwards and turn the whole figure to the right by some degrees . Thus I receive the complete Umma labyrinth.

The Babylonian Umma Labyrinth

The Babylonian Umma Labyrinth

If I want to develop the Wunderkreis from the Umma labyrinth, I must leave out some circuits, turn the whole figure and finally raise the middle part.

The nucleus

The nucleus

The supplements made in the preceding steps are emphasised in colour. The nucleus of the visceral labyrinth contains the Wunderkreis.

Surely the Wunderkreis as we know it nowadays was not developed in this way. There are no historical documents to prove that. However, in my opinion the relationship of both labyrinth figures can be proved thereby. They are not simply spirals or meanders. These elements are rather included and connected in a “labyrinthine” way.

Related Post

Read Full Post »

Older Posts »

%d bloggers like this: