The Circuit Sequence of Babylonian Visceral Labyrinths

Or more precisely: The circuit sequence of the the row-shaped visceral labyrinths. Amongst the up to now known 27 visceral labyrinths there are 21 row-shaped visceral walk-through labyrinths.  The circuit sequence may serve as a distinguishing feature. Here I would like to show the sequences of all 21 specimens.

Look at the single picture in a bigger version by clicking on them:

The method is to number the vertical loops in series from left to right. The shifting elements do not receive a number. Besides, “0” stands for outside. The transverse loops in E 3384 r_4 and E 3384 r_5 are numbered the same way. A special specimen is E 3384 v_4. Here some loops are “evacuated”. However, also there a useful circuit sequence can be found.

All labyrinths are different. No one is like the other. That alone is remarkable. So they do not follow an uniform pattern.

A first look at the circuit sequences shows that they resemble very much the circuit sequences of the one-arm alternating classical labyrinths. That means: The first digit after 0 is always an odd number. Then even and odd numbers are following alternating.

One of the next articles will deal with the decoding of the circuit sequences.

Related Posts

How would the Classical Labyrinths look as Babylonian Visceral Labyrinths?

Or differently asked: Can I transform a classical labyrinth into a Babylonian visceral labyrinth?

Therefore we should first see the differences; and then the interlinking components.

As an example I start with the best known classical labyrinth: The 7 circuit Cretan labyrinth.

The 7 circuit labyrinth

The 7 circuit Classical labyrinth, on the right the complementary to it

It has a center and an entrance. There is only one way in. In the middle I am at the aim and at the end of the way. To leave I must turn and take the same way in reverse order.

Among the Babylonian visceral labyrinths one can distinguish two main groups. One are more round and devoured into each other, while in others the loops are arranged row-shaped.

Here as an example the labyrinth E3384_r8 on a clay tablet from Tell Barri (Syria) (for more, please see related posts below).

A Babylonisn visceral labyrinth

A Babylonian visceral labyrinth with 10 circuits and two entries

In the visceral labyrinth I have two entries and no real center. Nevertheless, the way leads through all of the loops to the other access. It is a walk-through labyrinth.

The circuits here are numbered from the left to the right, while in the classical labyrinths they are numbered from the outside inwards. “0” stands for the outside, in the classical labyrinth the last figure for the center.

Every labyrinth is designated by a row of numbers, the circuit sequence or the path sequence. This is the order in which the circuits will be run one by one.

The connecting element therefore is the circuit sequence. Hence, we must construct “row-shaped” walk-through labyrinths from the circuit sequence of the classical labyrinths.

At first we take the 7 circuit labyrinth as shown above. We use the circuit sequence and connect the circuits arranged in row accordingly. The second “0” indicates the walk-through labyrinth.
Then this looks as follows:

Das 7-gängige Labyrinth als Eingeweidelabyrinth

The 7 circuit classical labyrinth as visceral labyrinth, on the right the complementary

We make this still for some more classical labyrinths.

Das 3-gängige Labyrinth

The 3 crcuit labyrinth, on the left the original, on the right the complementary to it

The original is developed from the meander and is also called Knossos labyrinth. The right one is developed from the “emaciated” seed pattern. However, is at the same time complementary to the Knossos labyrinth. Under the walk-in labyrinths the visceral walk-through labyrinths.


A 5 circuit labyrinth:

Das 5-gängige Labyrinth

A 5 circuit labyrinth, on the right the complementary

There are still other 5 circuit labyrinths with an other circuit sequence. But, in principle, the process is the same one.

The shown examples were all self-dual labyrinths.


Now we take a 9 circuit labyrinth. There are more variations:

Das 9-gängige Labyrinth

A 9 circuit labyrinth in four variations

And here the corresponding visceral labyrinths:

Die Eingeweidelabyrinthe

The visceral labyrinths


Here the 11 circuit labyrinth with the corresponding visceral labyrinths:

Das 11-gängige Labyrinth

The 11 circuit labyrinth and its complementary

This one is self-dual again. Therefore there is only one complementary version to it.


Here the 15 circuit labyrinth:

Das 15-gängige Labyrinth

The 15 circuit labyrinth and its complementary

This is also self-dual.

If we compare these newly derived visceral labyrinths to the up to now known historical Babylonian visceral labyrinths, we can ascertain no correspondence. Maybe a clay tablet with an identical labyrinth appears somewhere and sometime?

So far we know about 21 Babylonian visceral labyrinths as row-shaped examples in most different variations.

For comparison I recommend the following article with the overview.

Related Posts

How to get a Walk-Through Labyrinth

We take a 7-circuit classical labyrinth and number the single circuits from the outside inwards. “0” stands for the outside, “8” denotes the center. I take this two numbers into the circuit sequence, although they are no circuits. As start and end point they help to better understand the structure of the labyrinth.

Ariadne's thread in the 7-circuit labyrinth

Ariadne’s thread in the 7-circuit labyrinth

The circuit sequence is: 0-3-2-1-4-7-6-5-8

Everybody which already has “trampled” Ariadne’s thread (the path) in the snow knows this: Suddenly there is no more place in the middle, and one simply goes out. And already one has created a walk-through labyrinth. This is possible in nearly all labyrinths.

Then maybe it looks like this:

Ariadne's thread in a walk-through labyrinth

Ariadne’s thread in a walk-through labyrinth

If one wants a more compact labyrinth, one must change the shape. The internal circuits become, in the end, a double spiral. We can make either two separate ways or join them. So we will get a bifurcation.

Just about:

The 7-circuit walk-through labyrinth

The 7-circuit walk-through labyrinth

We will get the following circuit sequence if we take the left way or the fork to the left:
0-3-2-1-4-7-6-5-0

Now we take first the right way or the fork to the right, then the circuit sequence will be:
0-5-6-7-4-1-2-3-0

Because the two rows are written among each other, they simply can be add up together (without the first and the last digit):
8-8-8-8-8-8-8

This means: If I go to the left, I am in the original labyrinth, if I go to the right, I cross the complementary one.

The complementary labyrinth of the 7-circuit labyrinth

The complementary labyrinth of the 7-circuit labyrinth

It has the circuit sequence 0-5-6-7-4-1-2-3-8.

Or said in other terms: The walk-through labyrinth contains two different labyrinths, the original one and the complementary one.

The 7-circuit labyrinth is self-dual. Therefore I only get two different labyrinths through rotation and mirroring as Andreas has described in detail in his preceding posts.

How does the walk-through labyrinth look if I choose a non self-dual labyrinth?

I take this 9-circuit labyrinth as an example:

A 9-circuit labyrinth

A 9-circuit labyrinth

Here the boundary lines are shown.
On the top left we see the original labyrinth, on the right side is the dual to it.
On the bottom left we see the complementary to the original (on top), on the right side is the dual to it.
However, this dual one is also the complementary to the dual on top.

The first 9-circuit walk-through labyrinth

The first 9-circuit walk-through labyrinth

The first walk-through labyrinth shows the same way as in the original labyrinth if I go to the left. If I go to the right, surprisingly the way is the same as in the complementary labyrinth of the dual one.

And the second one?

The second 9-circuit walk-through labyrinth

The second 9-circuit walk-through labyrinth

The left way corresponds to the dual labyrinth of the original. The right way, however, to the complementary labyrinth of the original.

Now we look again at a self-dual labyrinth, an 11-circuit labyrinth which was developed from the enlarged seed pattern.

An 11-circuit labyrinth in Knidos style

An 11-circuit labyrinth in Knidos style

The left one is the original labyrinth with the circuit sequence:
0-5-2-3-4-1-6-11-8-9-10-7-12

The right one shows the complementary one with the circuit sequence:
0-7-10-9-8-11-6-1-4-3-2-5-12

The test by addition (without the first and the last digit):
12-12-12-12-12-12-12-12-12-12-12

Once more we construct the matching walk-through labyrinth:

The 11-circuit walk-through labyrinth

The 11-circuit walk-through labyrinth

Again we see the original and the complementary labyrinth combined in one figure. If we read the sequences of circuits forwards and backwards we also see that both labyrinths are mirror-symmetric. This also applies to the previous walk-through labyrinths.

Now this are of all labyrinth-theoretical considerations. However, has there been such a labyrinth already as a historical labyrinth? By now I never met a 7- or 9-circuit labyrinth, but already an 11-circuit walk-through labyrinth when I explored the Babylons on the Solovetsky Islands (see related posts below). Besides, I have also considered how these labyrinths have probably originated. Certainly not from the precalled theoretical considerations, but rather from a “mutation” of the 11-circuit Troy Towns in the Scandinavian countrys. And connected through that with another view of the labyrinth in this culture.

There is an especially beautiful specimen of a 15-circuit Troy Town under a lighthouse on the Swedish island Rödkallen in the Gulf of Bothnia.

A 15-circuit Troy Town on the island Rödkallen

A 15-circuit Troy Town on the island Rödkallen, photo courtesy of Swedish Lapland.com, © Göran Wallin

It has an open middle and the bifurcation for the choice of the way. This article by Göran Wallin on the website Swedish Lapland.com reports more on Swedish labyrinths.

For me quite a special quality appears in these labyrinths, even if there is joined a change of paradigm.

Related Posts

A Modern Walk-Through Labyrinth

The Babylonian visceral labyrinths have found entrance in the modern medicine. In quite an unusual way. A labyrinth-like chip serves for the diagnosis of cancer cells in the blood. The labyrinthine arrangement of the fluid channels shows up to be an effective tool to isolate circulating cancer cells in the blood. That means that the curvature and the tortuous route in the labyrinth is especially useful.

Labyrinth-Chip

Labyrinth-Chip, Photo courtesy of the University of Michigan, © Joseph XU, Michigan Engineering Communications & Marketing

What kind of labyrinth is this now?
At first sight it reminds of a medieval labyrinth, as it is the famous Chartres labyrinth. It has ten circuits in three sectors, in one these are eight. They will not be traversed one after the other, but reciprocally. And then it has two accesses: An entrance and an exit. It is a walk-through  labyrinth as we know that of the Babylonian labyrinths. Hence, we have an own, new type. And we see the pathway in the labyrinth, Ariadne’s thread. This reminds us of the Greek myth of the Minotaur, which is to be combated like cancer here.
If the Babylonian visceral labyrinths served for the divination, here the labyrinth serves the medicine.
This reminds me of “Ancient Myths & Modern Uses“, the book about labyrinths of Sig Lonegren.

Related Posts

Further Links