### The Spokes of the Auxiliary Figure

In all earlier posts on this subject I have considered labyrinths with 7 circuits. The auxiliary figures of these labyrinths all have 16 spokes. The number of spokes of the auxiliary figure is determined by the number of the ends of the seed pattern. I will show this here for some selected labyrinths with less or more than 7 circuits. The first two examples are the only alternating labyrinths with three circuits. The third is a labyrinth with 11 circuits.

The simpler labyrinth with three circuits is of the Löwenstein 3-type. The seed pattern of this labyrinth has 8 ends. The pattern is made-up of a serpentine from the outside in. This labyrinth again contains the smallest possible seed pattern that covers only one circuit in the MiM auxiliary figure. Therefore the auxiliary figure has 8 spokes and consists of three circuits for the labyrinth, one for the center and one more for the seed pattern. For the boundaries of the five circuits, six rings are needed.

The other is the well-known Knossos-type labyrinth. The auxiliary figure for this type of labyinth has also 8 spokes. The pattern of this labyrinth, however, is made-up of a single double-spiral like meander (Erwin’s type 4 meander). This has two nested turns on each half of the seed pattern. It is this the largest possible seed pattern for a labyrinth with three circuits in the MiM-style. The seed pattern covers two circuits. Therefore, the auxiliary figure for this labyrinth needs 6 circuits / 7 rings, which is one more than the Löwenstein-type labyrinth.

As a third example I show the Otfrid-type labyrinth in the MiM-style.

Ths seed pattern of this type of labyrinth has 24 ends as is the case with all other labyrinths with 11 circuits. Thus, the auxiliary figure has 24 spokes. In addition the seed pattern consitsts of six similar sixth parts, each of which is made-up of two nested turns. It therefore covers two circuits. The auxiliary figure thus has 11 circuits for the labyrinth plus one for the center and two for the seed pattern, in all 14 circuits and 15 rings.

The seed patterns of the Knossos-, Cretan- and Otfrid-type labyrinths all need two circuits in the MiM auxiliary figure. Remember that the Knossos type labyrinth is made-up of one, the Cretan of two and the Otfrid-type labyrinth of three single double-spiral-like (Erwin’s type 4) meanders. These are the three labyrinths of the horizontal line of the labyrinths directly related with the Cretan labyrinth.

**Related posts:**