Posts Tagged ‘Sequence of Circuits’

Find our Typology Confirmed

In chapter 3 of his book, Herman Wind (see below: Literature 1) aims at introducing a new categorization of labyrinths. For this purpose he has used images of labyrinths primarily from Kern (Literature 2) and also from some other sources. Wind has abstracted the sequences of circuits from the ground plans of the individual labyrinths. In the labyrinth library, table 3.2.1 A-F on pages 73-78 of his book, entries of 235 labyrinths can be found. Each line represents one labyrinth with a reference to figure, location, date when recorded and sequence of circuits. Labyrinths with the same sequences of circuits were arranged subsequently. By this, Wind has attributed similar labyrinths to the same groups, divergent labyrinths to different groups and thus created a typology. However, he does not term his groups „types“ but „families“ instead. These families have not been given different names and are also not always clearly distinguished one from another. Therefore in the labyrinth library, the reader himself must draw parentheses around the lines with the same sequences of numbers in order to identify the families.

In the book, five examples of the use of the labyrinth library are presented. Let us have a look at the first example (p. 81). This shows examples of labyrinths that were attributed to the same family as the labyrinth of Ravenna.

Figure 1. Labyrinths Attributed to the Same Family as Ravenna

Examples A „Filarete“, C „Ravenna“, and F l(eft) „Watts 7 circuits“ all have the same sequence of circuits. Example B „Hill“ was equally attributed to this family, even though it is completely different. It can be seen at first sight, that this labyrinth does not belong to this family. This is a faulty drawing of a labyrinth of the Saffron Walden type. It seems, there has been some mistake in the attribution of the labyrinth in the labyrinth library. Interestingly, neither the author nor the editor have noticed this. Although they have noticed the difference in the much more resembling example F r(ight) „Watts 11 circuits“, but only stated a certain similarity with the family of Ravenna. This is just what can be seen in a direct comparison of both images F l and F r.

The way Wind uses the sequence of circuits causes two problems:

First: This sequence of circuits is unique only in alternating one-arm labyrinths. If we consider also non-alternating labyrinths, examples with different courses of the pathway may have the same sequence of circuits (fig. 2).

Figure 2. Labyrinths with the Sequence of Circuits 7 4 5 6 1 2 3 0

So, Wind attributes the two non-alternating labyrinths (a) St. Gallen and (b) Syrian Grammar to the same family. This is correct. Should he find an alternating labyrinth of the shape (c), however, he would have to attribute this to the same family, although it has a clearly different course of the pathway. This because it’s sequence of circuits is 7 4 5 6 1 2 3 0, just the same as in examples (a) and (b). (For other examples with ambiguous sequences of circuits see related posts 1, 2).

Second: Wind’s sequences of circuits for the labyrinths with multiple arms are incomplete. They only indicate which circuits are covered at all but provide no information on how long the respective pieces of the pathway are. Such sequences of circuits are not even unique in alternating labyrinths. As Jacques Hébert explains, the sequence of circuits in labyrinths with multiple arms must take into account the division into segments and the resulting variation in length of path segments (Literature 3). This can be done in different ways.

Figure 3. Sequences of Circuits of the Wayland’s House Labyrinth

Figure 3 shows one of the possibilities using a pure sequence of numbers with the example of the Wayland’s House 1 labyrinth. The sequence of circuits of this labyrinth according to Wind (lower row W:) has 21 numbers. If we consider also the length of the path segments following Hébert (upper row H:) the sequence has 30 numbers. From Wind’s sequence of circuits the labyrinth cannot be restored without an image of it or only after multiple attempts. From Hébert’s sequence of circuits it can be restored without difficulty.

That there may exist alternating labyrinths with different courses of the pathway for the same incomplete sequence of circuits is shown in fig. 4.

Figure 4. Labyrinths with Different Courses of the Path and the Same Incomplete Sequence of Circuits

The two labyrinths shown have different courses of the pathway. This is represented in the complete sequence of circuits (upper lines). In the incomplete sequence of circuits (lower lines), however, the difference has disappeared. It is the same for both labyrinths.


The categorization by Wind is not new. We have done this already (Literature 4). We have used about the same material, have attributed similar labyrinths to the same groups and divergent labyrinths to different groups and refer to this as a typology (related posts 3, 4, 5). We also obtain more or less the same results (further links). Thus, the categorization by Wind confirms our typology to a great extent. As the criterion for similar or divergent, we use the course of the pathway. However, we don’t describe this with the sequence of circuits but with the pattern. This allows us a unique and complete representation of the course of the pathway and an unambigous attribution of the labyrinth examples to types of labyrinths.


  1. Listening to the Labyrinths, by Herman G. Wind, editor Jeff Saward. F&N Eigen Beheer, Castricum, Netherlands, 2017.
  2. Kern H. Through the Labyrinth: Designs and Meanings over 5000 years. London: Prestel 2000.
  3. Hébert J. A Mathematical Notation for Medieval Labyrinths. Caerdroia 34 (2004), p. 37-43.
  4. Frei A. A Catalogue of Historical Labyrinth Patterns. Caerdroia 39 (2009), P. 37-47.

Related Posts

  1. Circuits and Segments
  2. The Level Sequence in One-arm Labyrinths
  3. Type or Style / 6
  4. Type or Style / 5
  5. Type or Style / 1

Further Links

Katalog der Muster historischer Labyrinthe


Read Full Post »

There are sets of four labyrinths each, from which the labyrinths are in a complementary or dual relationship with each other. This is also expressed in their sequences of circuits. If we write down the sequences of circuits of complementary labyrinths below each other, they add up at each position to One greater than the number of circuits. In fig. 1 I show what this means.

Figure 1. Sequences of Circuits in Complementary Labyrinths

First we write down the sequence of circuits for each of the four patterns. The patterns in the same column are complementary. Next we extract the sequences of circuits of dual labyrinths 2 and 4 and in the line below write the sequences of circuits of dual labyrinths 7 and 5. Now we can add the numbers below each other and will find that at each position they sum up to 6. This is 1 greater than the number of 5 circuits.

Now there is another relationship between the sequences of circuits. This is illustrated in figure 2.

Figure 2. Sequences of Circuits in Dual-Complementary Labyrinths

The sequences of circuits of the dual-complementary labyrinths are mirror-symmetric. Thus, in this case, the labyrinths that are in a diagonal relationship to each other are considered. Labyrinth 5 is the complementary of the dual (4) and the dual of the complementary (7), respectively, i.e. the dual-complementary to labyrinth 2. This connection is highlighted by a black line with square line ends. The sequences of circuits of these labyrinths are also written in black color. If we write the sequence of circuits of labyrinth 2 in reverse order this results in the sequence of circuits of labyrinth 5 and vice versa (black sequences of circuits).
Labyrinth 7 is the complementary of the dual (2) and the dual of the complementary (5), i.e. the dual-complementary to labyrinth 4. This is highlighted by a grey line with bullet line ends. The sequences of circuits of these labyrinths are also written in grey. Also in this case it is true: the sequence of circuits of labyrinth 4 written in reverse order corresponds with the sequence of circuits of labyrinth 7 and vice versa.

Related posts:

Read Full Post »

The notation with the coordinates is consistent, understandable and works well in one- and multiple-arm, alternating and non-alternating labyrinths. However, for a labyrinth with three circuits, at least 6 segments are needed (in one- and two-arm labyrinths: number of circuits times two, in all other labyrinths: number of segments times number of arms).

Correspondingly, the sequences of segments rapidly increase in their length with the size of the labyrinth. The Chartres type labyrinth e.g. has 44 segments, as have all other types of labyrinths with 4 arms and 11 circuits.



Here I present the sequence of segments of the Chartres type labyrinth for illustration. This is:

Nevertheless this sequence of segments is a well understandable instruction of how to draw the labyrinth. It reads about like this: Go first to the fifth circuit, walk along the first segment (5.1), then proceed to the 6. circuit and stay in the first segment (6.1). Next, go to the 11th circuit in the first segment (11.1) continue on the same circuit to the 2nd segment (11.2), skip then to the 10th circuit in the 2nd segment (10.2) asf. This also implies that from each coordinate subsequent to the previous it becomes clear, whether the path makes a turn (as from coordinate 5.1 to 6.1) or if it traverses the arm (such as from 11.1 to 11.2). However it is a long and complex series of numbers.

Now there are also various other possibilities to write notations for multiple-arm labyrinths that may have less digits. In any case, the labyrinths first have to be notionally partitiond into segments. However in some notations it is possible to combine multiple segments in one term. I will illustrate this here with the example of a notation for the Chartres labyrinth by Hébert°.


This is a notation comparable with the one presented in the post „Circuits and Segments“, where the segments had been numbered by circuits. In this case, if the pathway passes through multiple segments on the same circuit, the number of the circuit was repeated accoridingly. This, for the labyrinth of Chartres would result in 44 numbers. In the notation by Hébert the length of the sequence reduces to 31 numbers. However, each number must now be written with a prefix. For instance, „-“ indicates, that the following number is written only once, as the path traverses only one segment. A prefix „+“, on the other hand, indicates that the following number would have to be written twice as the path passes two subsequent segments. Thus, different prefixes have to be taken into account. And two prefixes will not be sufficient. Additional prefixes will be required to capture the pathway passing through three, four or more subsequent segments, or to indicate that the arm is traversed whilst the path skips onto another circuit. So while this notation is shorter it is also more difficult to apply. Furthermore it is subject to the weakness already discussed earlier, that, althoug it indicates the circuit, it does not indicate the segment actually covered by the pathway.

Other notations exist as well. I do not address this further here. It should have become clear that the sequences of segments in multiple-arm labyrinths rapidly increase in length and complexity. In most types of such labyrinths the sequence of segments is therefore not suited for giving a name. Just try to imagine to name the labyrinth I had shown in January with its sequence of segments. This labyrinth has 12 arms and 23 circuits and thus 276 segments.



I abstain here from writing down the sequence of segments of this labyrinth. It would fill some 14 – 15 lines.


To conclude, I want to come back to the original question whether the sequence of circuits can be used for giving names to the different types of labyrinths. I had two concerns about this:

  • First, in one-arm labyrinths this sequence was not unique. However this problem could be easily solved by adding a prefix „-“ only to those numbers of circuits where the pathway traverses the axis. Therefore in not too large types of one-arm labyrinths the sequence of circuits can be used for naming.
  • Second, in multiple-arm labyrinths the sequence will rapidly increase in length. It turned out that in these labyrinths the sequence of segments has to be considered and that this usually becomes either be too long or too complex or both. Therefore I consider it not suited for giving name in multiple-arm labyrinths.

° Hébert J. A Mathematical Notation for Medieval Labyrinths. Caerdroia 2004; 34: 37-43.

Related Posts:

Read Full Post »

With the coordinates for segments from the last post (see related posts below) we have now found an understandable notation for the sequence of segments of labyrinths. Here it seems important to me to add that such coordinates can also be used for one-arm labyrinths. I will show this with the examples for which I had already shown the sequences of circuits (see related posts). For this, each circuit has to be divided into two segments.

Partitioning of Circuits in Segments

Next we write the sequences of segments for the three examples and also compare them straightaway with their sequences of circuits.



A unique notation for one-arm labyrinths can also be achieved, if we can write two different numbers on the same circuit, one for each side of the axis. For this, the circuits have to be partitioned into two segments. This allows us to write unique sequences of segments for alternating and non-alternating labyrinths. Also it is possible to use the same form of notation in one-arm and multiple-arm labyrinths. However, this notation will always need 14 coordinates for each one-arm labyrinth with 7 circuits. This is clearly more digits than are needed for the sequences of cirucits with separators.



Related posts: 


Read Full Post »

At the end of the last post (see related posts) we were left with the following problem. If we number the segments consecutively, we obtain a unique seqence of segments. However it can not be directly seen in the sequence of segments which circuit is encountered by the pathway. If we number the segments by circuits, the sequence does indicate which circuit is encountered. However it then looses the uniqueness.

Now there is a possibility to combine the numbering. That means to write a number for the circuit first, then a separator and then a number for the segment. In the example of the labyrinth by Valturius this looks as follows (fig. 1).


Figure 1. Numbering by Circuits and Segments


The labyrinth has four circuits and three arms, and thus also three segments per circuit. The first number indicates the circuit, the second indicates the segment. This numbering provides some kind of coordinates for the various segments.

Let us now write the sequences of segments for the alternating and non-alternating labyrinths from the last post using this numbering.


Figure 2. Sequences of Segments of the Alternating and Non-alternating Variants

Both variants have their own unique sequences of segments. In each element of the sequence of segments it can be identified which circuit and which segment is encountered by the path. Such a sequence of segments can be easily generated and memorized. A shortcoming of this numbering is that each element is composed of two figures and a separator. Furthermore the elements must be clearly separated from each other. Therefore this sequence of numbers requires more digits and more space.

Related posts:

Read Full Post »

In my last post I have shown the sequence of segments in labyrinths with multiple arms. This is unambigous. But as a disadvantage it does not indicate directly which circuit is encountered by the pathway.

Now it is also possible to keep the partition in segments but only number the circuits. This allows to indicate directly in the sequence of segments, which circuit is visited by the pathway. Thus the same number may repeatedly occur in this sequence. This works well in many cases but may also leed to problems. In the labyrinth I had shown in my last post the problem does not occur. Therefore I will illustrate it here with an other example. For this I chose the labyrinth by Valturius as this is a small, understandable example (Fig. 1).


Figure 1. Labyrinth by Valturius. Source: Kern 2000, fig. 315, p. 179.

This labyrinth from a military manuscript by Robertus Valturius of the 15th century has three arms and four circuits. (Please note, that the arms are not proportionally distributed. This, however, has no influence here. I therefore use a proportional distribution for reasons of simplicity.)


Figure 2. Numbering of the Segmente: Left Image by Segment, Right Image by Circuit

Figure 2 shows in the left image the partition and numbering by segments I had already used in my last post. The right Image shows the same partition of segments although numbered by circuits only. As the labyrinth has four circuits, there are 12 segments.

The labyrinth by Valturius is alternating. However there exists a non-alternating labyrinth with the same level sequence. And this brings us back to the problem.


Figure 3. Sequences of Segments Numbered by Segments

Figure 3 shows the alternating labyrinth by Valturius (left image) and the non-alternating variation (right image). They show two different courses of the pathway. These are also correctly represented by the two different sequences of segments. Both sequences of segments are similar for the first 9 segments: 1 4 7 8 5 2 3 6 9 … The sequences of the three last segments, however, are different. In the labyrinth by Valturius the sequence continues with segments ……… 12 11 10. On the other hand, the sequence of segments in the non-alternating variation is ……… 10 11 12.

If, however, we number the segments by circuits, we lose the uniqueness.


Figure 4. Sequences of Segments Numbered by Circuits

Figure 4 shows the same labyrinths as fig. 3. But with their segments numbered by circuits. Both variants have the same sequence of segments 1 2 3 3 2 1 1 2 3 4 4 4. So here we can always identify in the sequence of segments, which circuit is encountered by the pathway. However, for the same sequence of segments there may exist multiple (in this case two) different courses of the pathway. The same problem occured already in the level sequence of one-arm labyrinths.

Related Posts:

Read Full Post »

%d bloggers like this: