Posts Tagged ‘complementary’

It is known that there are 8 alternating labyrinths with 1 arm and 5 circuits (see “Considering Meanders and Labyrinths”, related posts, below). Of these, four are not self-dual. These four all are in a relationship to each other via the duality and complementarity (see “The Complementary versus the Dual Labyrinth”, related posts, below). The other four labyrinths are self-dual.

I had already pointed to the relationship between complementary and self-dual labyrinths (see “The Complementary Labyrinth”, related posts, below). Here I want to elaborate on it further. For this purpose I use the same form of diagram I had already used in my previous post (see “The Complementary versus the Dual Labyrinth”). I also use the same numbers of the labyrinths according to the numbering of Arnol’d’s meanders (see “Considering Meanders and Labyrinths”), that underlie them.

Figure 1. Labyrinths 1 and 6

The first of the Arnol’d’s labyrinths, number 1, is self-dual. In the diagram, the dual is situated in the same row, the complementary in the same column with the original labyrinth. The dual of number 1 is again number 1 (what actually is the meaning of selfdual). The complementary of number 1 is number 6. And – of course – is the dual to the complementary again number 6. So in the case of self-dual labyrinths, we only captured two different labyrinths, whereas it were four in the case of not self-dual labyrinths.

Thus, two more labyrinths are still missing. We need another diagram to capture labyrinths number 3 and number 8 (fig. 2).

Figure 2. Labyrinths 3 and 8

And, indeed, these two are complementary to each other. So in self-dual labyrinths, only two different labyrinths are in a relationship to each other.

Here the question arises: Do there also exist self-complementary labyrinths? Up to now we have not yet found such a labyrinth. So let us remember, what self-dual imples. The patterns of the original and self-dual labyrinths are self-covering. In fig. 3 I show what that means. The two patterns in the same row are dual. If we shift them together, we can easily see, what I mean.

Figure 3. Self-dual patterns are self-covering

Thus, self-complementary would imply that the original and complementary pattern would also be self-covering.

Figure 4. Complementary patterns are not self-covering

Fig. 4 shows, that even though there is a certain similarity between these two patterns, they are not self-covering. In my opinion there are no self-complementary labyrinths. This is because vertical mirroring with uninterrupted connections to the entrance and center modifies the sequence of circuits. This, however, woult have to remain unaltered.

Related Posts:


Read Full Post »

In the last post I have presented the complementary labyrinth. I did this with the example of the basic type labyrinth. This is a self-dual labyrinth. The complementary is different from the dual labyrinth. This can be better shown using non-self-dual labyrinths. I want tho show this here and for this choose an alternating labyrinth with 1 arm and 5 circuits. As already shown in this blog, there exist 8 such labyrinths (see related post below: Considerung Meanders and Labyrinths). Of these, 4 are self-dual (labyrinths 1, 3, 6, and 8) and 4 are not self-dual (labyrinths 2, 4, 5, and 7).

I thus choose one of the non-self-dual labyrinths, nr. 2, and use the pattern of it. With the pattern, two activities can be performed:

  • Rotate

  • Mirror

Figure 1 shows the result of performing these actions with pattern 2.

Figure 1. Rotating and Mirroring of the Pattern

Rotation leads to the pattern of labyrinth 4
Mirroring leads to pattern 7

So we have already three labyrinths. Now it is possible to go even further. Rotating the dual again brings it back to the original labyrinth. However, the dual can also be mirrored. This results then in the complementary of the dual. And similarly, the complementary can be rotated, which results in the dual to the complementary.

Mirroring of the dual (pattern 4) leads to the complementary pattern of labyrinth 5
Rotation of the complementary (pattern 7) leads to the dual of it – which is also pattern 5.

Figure 2. Relationships

Figure 2 shows the labyrinths corresponding to the patterns. The labyrinths are presented in basic form (i.e shown with their walls delimiting the pathway) in the concentric style. All four non-self-dual alternating labyrinths with 1 arm and 5 circuits are in a relation of either dualtiy or complementarity to each other.

Related posts:

Read Full Post »

If we turn the inside out of a labyrinth, we obtain the dual labyrinth of it. The dual labyrinth has the same pattern as the original labyrinth, however, the pattern is rotated by a half-circle, and the entrance and the center are exchanged. This has already been extensively described on this blog (see related posts, below).

Now, there is another possibility for a relationship between two labyrinths with the same pattern. In this kind of relationship, the pattern is not rotated, but mirrored vertically. Also – other than in the relationship of the duality – the entrance and the center are not exchanged. At this stage, I term this relation between two labyrinths the complementarity in order to distinguish it from the relationship of the duality.

Here I will show what is meant with the example of the most famous labyrinth.

This labyrinth is the „Cretan“, „Classical“, „Archetype“ or how soever called alternating, one-arm labyrinth with 7 circuits and the sequence of circuits 3 2 1 4 7 6 5, that I will term the „basic type“ from now on.

Figure 1.The Original Labyrinth

Figure 1 shows this type in the concentric style.

The images (1 – 6) of the following gallery (figure 2) show how the pattern of the complementary type can be obtained starting from the pattern of the original type.

Image 1 shows the pattern of the basic type in the conventional form. In image 2 this is drawn slightly different. By this, the connection from the outside (marked with an arrow downwards) into the labyrinth and the access to the center (marked with a bullet point) are somewhat enhanced. This in order to show, that when mirroring the pattern, the entrance and the center will not be exchanged. They remain connected with the same circuits of the pattern. In images 3 til 5 the vertical mirroring is shown, divided up in three intermediate steps. Vertical mirroring means mirroring along a horizontal line. Or else, flipping the figure around a horizontal axis – here indicated with a dashed line. One can imagine, a wire model of the pattern (without entrance, center and the grey axial connection lines) being rotated around this axis until the upper edge lies on bottom and, correspondingly, the lower edge on top. In the original labyrinth, the path leads from the entrance to the third circuit (image 3). With this circuit it remains connected during the next steps of the mirroring (shown grey in images 4, 5 and 6). After completion of the mirroring, however, this circuit has become the fifth circuit.The path thus first leads to the fifth circuit (image 6) of the complementary labyrinth. A similar process occurs on the other side of the pattern. In the original labyrinth, the path reaches the center from the fifth circuit. This circuit remains connected with the center, but transforms to the third circuit after mirroring.

Figure 3: The Complementary Labyrinth

In the pattern of the complementary labyrinth we can find a type of labyrinth that has already been described on this blog (see related posts). It is one of the six very interesting (alternating) labyrinths with 1 arm and 7 circuits. That is to say the one with the S-shaped course of the pathway.

So, what is the difference between the dual and the complementary labyrinth?

Let us remember that the basic type is self-dual. The dual of the basic type thus is a basic type again.

The complementary to the basic type is the type with the S-shaped course of the pathway.

By the way: In this case, the dual to the complementary is the same complementary again, as also the complementary of the basic type is self-dual (otherwise it would not be a very interesting labyrinth).

This opens up very interesting perspectives.

Related posts:

Read Full Post »

%d bloggers like this: