How old are they, who has built them, what was the purpose? There are many speculations about that (see the **Further Links** below). I do not want to take part in it.

I only want to find out how they look like, which type of labyrinth they are. I have found enough indications. There are several photos which reveal a part of the labyrinths quite well, unfortunately, not completely.

On the Internet I have found the following graphics from a book published in 1927 by Nikolai Vinogradov (historian, ethnologist and folklorist, 1876 – 1938).

In Hermann Kern’s book “Labyrinths” I have found the photo of a petroglyph on the island Skarv in the Stockholm archipelago (Sweden), presumably from the 18th/19th century.

Compared to the graphics above the labyrinth is mirrored and the double spiral has a circuit less.

The labyrinths, called Babylons in the local dialect, have been made in the same way as the Scandinavian Troy Towns, probably at the same time and presumably served similar purposes.

Nevertheless, the layout is completely different. There are none of the well-known 11- or 15-circuit Cretan labyrinths which can be made from the enlarged seed pattern.

They belong to the walk-through labyrinths. These have a double spiral in the middle and labyrinthine circuits round two turning points. They can have two accesses or only one, however, with a bifurcation.

The hints, the Babylons could be seen as part of a cult of the dead and would show two snakes winding into each other, well explain the figure. They could also have been put on as a sort of piece of art.

There appear two spirals interlocking into each other. In a geometrical figure with semicircles around different centres they can be constructed as follows:

Both lines can be drawn well in one go and freehand: You will begin in the middle, turn to the right, circling once around, then in a larger turn outwardly from the right side to the left, from there inwards back to the right side. The red line ends her, the blue returns one more time to the left, circling inwards.

When you know how to draw each line, try to draw one in the other. Best begin with the blue line and leave enough space between the lines. Then put the red line in between.

That sounds complex, and it is. But best of all try several times with a pencil on a sheet of paper.

The result should look like thus:

For a labyrinth laid of stones these semicircular or elliptical curves can relatively simple be realised.

Best of all one starts in the middle. There one can arrange most easily the thickening of the ends and the interpieces. Then the remaining lines follow in steady distances.

One makes three semicircles downwards (step 1), and four semicircles upwards (step 2). Thus the double spiral in the middle is built.

Then I add five semicircles on top (step 3). There are five free ends on the left side, and seven on the right. These I elongate to the sloped line at right and at left (step 4).

In step 5 I connect both outermost free ends on the left and on the right side so with each other that in the middle a gap remains for the entrance. In step 6 the remaining free ends are connected parallel to the curves just made before. The innermost free end on each side will be the turning point.

It is noteworthy that the limitation lines do not overlap like they doe in the Cretan labyrinth. In spite of the bifurcation the way through the whole figure is unequivocal and follows the typical “labyrinthine” rhythm.

Even if the Babylons were not put on so geometrically precisely, nevertheless, these geometrical features show the essential internal structure and let them count to the Wunderkreise. I would like to call them Babylonian Wunderkreise to discern them from the Wunderkreise with two accesses side by side like we see that in the Zeidner Wunderkreis.

The Babylons are related to the Babylonian Labyrinths through the double spiral in the middle and the unequivocal way that leads to it, even if there are two opposite entrances.

**Related Posts**

**Further Links**

- Wikipedia: Stone Labyrinths of Bolshoi Zayatsky Island
- Wikipedia: Solovetsky Islands
- WeirdRussia: Mysterious Stone Labyrinths of Bolshoi Zavatsky Island
- Ancient Origins: The Ancient Stone Labyrinths of Bolshoi Zayatsky
- Russian culture: Mystery of Solovski labyrinths
- Live Journal, Budovskiy: Solovetsky Labyrinths
- Burov (in Russian): On the semantics of the stone labyrinths of the North
- The Solovki Encyclopedia: Kola Peninsula and Solovki labyrinths

Filed under: Labyrinth, Report, Typology Tagged: Babylon, double-spiral, Skarv, Solovki, Troy Town, Vinogradov, Wunderkreis ]]>

Next we write the sequences of segments for the three examples and also compare them straightaway with their sequences of circuits.

A unique notation for one-arm labyrinths can also be achieved, if we can write two different numbers on the same circuit, one for each side of the axis. For this, the circuits have to be partitioned into two segments. This allows us to write unique sequences of segments for alternating and non-alternating labyrinths. Also it is possible to use the same form of notation in one-arm and multiple-arm labyrinths. However, this notation will always need 14 coordinates for each one-arm labyrinth with 7 circuits. This is clearly more digits than are needed for the sequences of cirucits with separators.

**Related posts: **

Filed under: Labyrinth Tagged: alternating, Circuit, non-alternating, Segment, Sequence of Circuits, sequence of segments ]]>

But of course the number of circuits also can be reduced by this way. This is possible for all labyrinths built from this seed pattern, as well as for all containing this pattern. I would like to call them compounded labyrinths.

For me this are the Indian Labyrinth, the Baltic Wheel and the Wunderkreis. They all have only two turning points, however, the middle is formed in each case differently.

The Indian Labyrinth (Chakra Vyuha) contains a spiral, the Baltic Wheel has a big empty middle and a second access, the Wunderkreis contains a double spiral and also has the second access.

Here the Indian Labyrinth which can be generated through a seed pattern contained in a triangle:

The Indian Labyrinth with two more circuits:

Here the Baltic Wheel. The middle section is constructed in a special way. But the circuits round the two turning points can be increased or decreased in pairs.

The Baltic Wheel with two less circuits:

The Wunderkreis has a double spiral in the middle section. The double spiral can have more or less windings (not shown here). But the typically “labyrinthine” circuits round the two turning points can be influenced as mentioned above.

The Wunderkreis with two less circuits:

In the quoted statements I would like to show that there is a “technology” through that one can influence the size of a labyrinth.

**Related Post**

Filed under: Design, Labyrinth, Typology Tagged: baltic wheel, Indian labyrinth, seed pattern, Wunderkreis ]]>

Now there is a possibility to combine the numbering. That means to write a number for the circuit first, then a separator and then a number for the segment. In the example of the labyrinth by Valturius this looks as follows (fig. 1).

The labyrinth has four circuits and three arms, and thus also three segments per circuit. The first number indicates the circuit, the second indicates the segment. This numbering provides some kind of coordinates for the various segments.

Let us now write the sequences of segments for the alternating and non-alternating labyrinths from the last post using this numbering.

Both variants have their own unique sequences of segments. In each element of the sequence of segments it can be identified which circuit and which segment is encountered by the path. Such a sequence of segments can be easily generated and memorized. A shortcoming of this numbering is that each element is composed of two figures and a separator. Furthermore the elements must be clearly separated from each other. Therefore this sequence of numbers requires more digits and more space.

**Related posts:**

Filed under: Labyrinth, Typology Tagged: Circuit, Coordinates, Segment, Sequence of Circuits, sequence of segments ]]>

Now this seed pattern with the two turning points can be extended in a very simple way, just by adding more lines in pairs.

The bigger labyrinths have more circuits, however, maintain her basic structure. And, nevertheless, these are own types, because they have another path sequence than the 7-, 9-, 11-, 15- etc. circuit classical labyrinths. But they are not known, neither among the historical, nor among the contemporary labyrinths. Because they are too easy? Besides, the lines have quite a special rhythm. A closer look can be worthwhile.

The 3 circuit labyrinth of this type first appeared about 400 B.C. on the silver coins of Knossos:

The circuits are numbered from the outside inwards from 1 to 3. The center is marked with 4. The blue digits labels the circuits inside out. The path sequence is 3-2-1-4, no matter which direction you take. Through that a special quality of this labyrinth is also indicated: It is self-dual.

What now shall be the special rhythm? To explain this, we look at a 5 circuit labyrinth of this type:

The path sequence is: 5-2-3-4-1-6. At first I circle around the center (6) on taking circuit 5. Then I go outwardly to round 2, from there via the circuits 3 and 4 again in direction to the center, at last make a jump completely outwards to circuit 1, from which I finally reach the center in 6.

Here a 7 circuit labyrinth in Knidos style:

The path sequence is: 7-2-5-4-3-6-1-8. It is also self-dual. The typical rhythm is maintained, the “steps” are wider: From 0 to 7, from 7 to 2, and finally from 1 to 8 (the center).

Here a 9 circuit labyrinth in circular style:

The path sequence is: 9-2-7-4-5-6-3-8-1-10. The step size is anew growing. This labyrinth is self-dual again.

This example exists as a real labyrinth since the year 2010 on a meadow at Ostheim vor der Rhön (Germany):

To finish we look at a 11 circuit labyrinth in square style:

The path sequence is: 11-2-9-4-7-6-5-8-3-10-1-12. And again self-dual.

I think, the method is clear: We add two more lines more and we will get two circuits more. So we could continue infinitely.

The shape of the labyrinth can be quite different, this makes up the style. The path sequence shows the type. And for that kind of labyrinth we always have only two turning points.

**Related Posts**

- The Classical 3 Circuit Labyrinth Type Knossos
- How to Make a Square Classical 3 Circuit Labyrinth Type Knossos
- How to Draw a Classical Labyrinth Part 1
- How to Draw / Design a Classical Labyrinth Part 2
- Self-dual Labyrinths

Filed under: Design, Labyrinth, Typology Tagged: path sequence, seed pattern, Type Knossos ]]>

Filed under: Labyrinth ]]>

Thus is the plan:

It is a serpentine-type Roman labyrinth with four sectors. The whole diameter amounts to 15 m, the middle has a diameter of 1.40 m. The ways are 40 cm wide and paved with granite stones. They are separated of each other by a 50-cm-wide grass verge. The whole way through the 7 circuits in the 4 sectors to the center amounts to about 182 m. The entrance of the labyrinth lies on the right beside the main axis. The dividing stripes of the single quadrants lie on a cross.

Some photographic impressions:

There are two videos on YouTube, here the first one:

And here the second:

In the meantime, I have considered what one could have made better in a “labyrinth-technically” way. Since the idea in itself of a Roman labyrinth in the middle of the health garden seems not to be so good realized.

The last piece of the path arriving the center should always lie on the central main axis. If one makes the middle a little bigger, one receives above all longer and steadier path segments around the middle. If one wants to reach this and maintain the whole diameter of 15 m, one can make the paths and the dividing stripes each 40 cm broad. Then the center would have a diameter of 3.2 m.

One could have built a better Labyrinth at the same place and with the same costs.

Here the layout drawing:

**Related Post**

**Further Link **(in German)

Filed under: Design, Labyrinth, Report, Typology Tagged: roman labyrinth, sector labyrinth, serpentine-type ]]>

Filed under: Labyrinth, Report, Typology Tagged: Christmas Tree Labyrinth ]]>