# The Luan Labyrinth

Andreas recently brought into play the sand drawing “Luan” on Malekula, which Hermann Kern rejected as a labyrinth. It represents an uninterrupted line, but without an entrance or an access to the center.

But it attracted me to try to make a “real” labyrinth out of it. To do this, there must be a beginning and an end. This is easily done by cutting the unbroken line at one point. And then you bend the end piece towards the center. I took the lowest point of the outer line.

This is how the drawing will look as a labyrinth figure in concentric form:

The figure may look quite different from the original at first glance, but the lines are identical. The labyrinth has five circuits and four axes with three double barriers and passes through four sectors. The entrance to the labyrinth is on the first circuit, as is the entrance to the center. The path moves in serpentines towards and away from the center. It is a sector labyrinth and is reminiscent of the Roman labyrinths in serpentine form.

From a design point of view, I don’t really like the entrance to the labyrinth on the first circuit. By the way, an entrance to the center from the last circuit is not very happy either. Both are often seen in newly designed labyrinths.
How can this be changed? The easiest way to do this is to choose only two double barriers instead of three, thus obtaining three sectors.

This is how it looks then:

The entrance to the labyrinth is on the 5th circuit and the entrance to the center is again from the 1st circuit as in the four-axis labyrinth.

Now we want to work a bit more on the reshaping. What would it look like if I arranged only 3 circuits instead of the 5?

Now this is very reminiscent of labyrinths shown earlier in this blog (see related posts below), especially the 3 circuit Chartres labyrinth.

Very topically to this Denny Dyke offers a necklace with pendant with exactly this labyrinth on his website:

This shows once again how interesting the subject of labyrinths can be.

Related Posts

# Labyrinths with Pseudo Single-Barriers

In my last post I have introduced the pseudo single-barrier, presented the two only historical labyrinths with pseudo single-barriers I am aware of, and have shown an own labyrinth with 2 axes, 3 circuits and one pseudo single-barrier (see: related posts, below).

The pattern for this labyrinth with 2 axes and 3 circuits can be easily enlarged, such that labyrinths with multiple axes and exclusively containing pseudo single-barriers can be designed. Figure 1 shows a labyrinth with 3 axes and 5 circuits with 2 pseudo single-barriers.

In fig. 2, a labyrinth with 4 axes, 7 circuits and 4 pseudo single-barriers is presented.

Figure 3, finally, shows a labyrinth with 5 axes, 9 circuits and 8 pseudo single-barriers.

All pseudo single-barriers are situated in the side axes. Furthermore, they are placed such, that the pathway always in its movement forward skips two circuits from the outside in without changing its direction. In the movement backward, the pathway follows a serpentine pattern.

This pattern can be extended so that labyrinths with any desired number of axes with pseudo single-barriers can be generated.

Related Post:

# The Labyrinth on the Silver Coins of Knossos, Part 3

There are now digital coin collections in which I have found more coins with labyrinth representations. This is primarily the network of University coin collections in Germany (link below).

In the common portal of the NUMiD group (also link below) I have now found ten coins with the search term: Labyrinth Knossos, of which I would like to show here 5 pieces with the labyrinth of the reverse side.

All of these works and their content are licensed under a Creative Commons Attribution – Non-Commercial – Distribution Alike 3.0 Germany License.

There are two coins in the coin cabinet of the Würzburg University.

One with the object number ID373 shows the head of Hera on the obverse side, and the 7 circuit labyrinth on the reverse side.

The second coin with the object number ID375 shows the head of Apollo on the obverse side, and a male figure sitting on a labyrinth on the reverse side. This has 5 circuits and should be one of the “faulty” silver coins from Knossos.

I also found two coins at the Erlangen University.

One with the object number ID134 shows the head of Hera on the obverse side, and the labyrinth of the Minotaur on the reverse side.

The other with the object number ID135 shows the head of Zeus on the obverse side, and the labyrinth of the Minotaur on the reverse side.

Then there is the Münster University with one coin. It has the object number ID1316, and shows on the obverse side Zeus as a bull with Europa sitting on his back. The reverse side shows the labyrinth of the Minotaur, which is unfortunately a bit difficult to recognize.

In the digital coin cabinet of the Academic Art Museum of the Bonn University I found another coin from Knossos under the inventory number G.34.07.

It shows the head of Zeus on the front and a square labyrinth on the back.

I strongly recommend visiting the digital coin collections: For additional information and to view coins not shown here.

• Related Posts

# Pseudo Single Barrier

As was the case with double-barriers, we can also distinguish real from pseudo single-barriers (see: related posts, below). Here I want to show this first with the examples of two non-labyrinthine figures. I start with the figure „Luan“ (fig. 1).

Source: Kern, fig 604, p. 285

This is a recent sand drawing of the Stone Age culture on Melanesian island Malekula (Vanatu). Kern writes, that this figure is not a labyrinth and cannot not even with any sound justification be considered misinterpreted labyrinth (Kern, p. 285). It is made-up of a uninterrupted line without entrance or center. However, it has 4 axes and 5 circuits.

In fig. 2, left image, I show a simpler version of it with only 3 circuits. This better illustrates the principle of its design. This figure clearly can be read as an uninterrupted Ariadne’s Thread, and therefore I have drawn it in red. Of course, we can also add the representation with the walls delimiting the pathway (right image, blue). As can be seen, this figure has a certain similarity with a labyrinth. The axes are formed by the same turns of the pathway that typically appear in the labyrinth of Chartres and many other types of labyrinths.

In figure 3, I have redrawn the figure from fig. 2 and reduced it to 2 axes. The left (red) image shows the representation with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway. Still, the Ariadne’s Thread is a uninterrupted line without entrance or center. Here we can see the special course of the pathway at the side axis. The two turns of the path are shifted one circuit against each other. In between, an axial piece of the pathway is inserted where the path changes from the first to the third circuit without changing direction. Analogically with the double barriers we can term these courses single barriers. The course of the pathway in figure 2 is a real, the one in fig. 4 a pseudo single barrier (see related posts, below).

This figure can easily be transformed to a labyrinth with 2 axes and 3 circuits, as shown in fig. 4. The left (red) image shows the representation of the labyrinth with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway.

As far as I know, the pseudo single-barrier has appeared in two historical labyrinths (fig. 5). The left image shows the pavement labyrinth in Ely Cathedral with 5 axes and 5 circuits. The pseudo single-barrier is situated at the second axis where the path changes from the fourth to the second circuit without changing direction. The right image shows the third out of 8 labyrinth drafts by the clergyman Dom Nicolas Rély. This labyrinth, that I called Rély 3, has 9 axes and 5 circuits. The axes are designed as real (axes 1, 2, 4, 6, 8) and pseudo (axes 3, 5, 7) single-barriers.

Sources: Ely – Saward, p. 115; Rély 3 – Kern, fig. 457a, p. 241.

References:

• Kern H. Through the Labyrinth: Designs and Meanings over 5000 years. London: Prestel 2000.
• Saward J. Labyrinths & Mazes: The Definitive Guide to Ancient & Modern Traditions. London: Gaia 2003.

Related Post: