Feeds:
Posts
Comments

Archive for the ‘History’ Category

A very beautiful labyrinth example (fig. 1) named Cakra-vyuh can be found in Kern’s Book° (fig. 631, p. 294).

Andere 5

Figure 1: Cakra-Vyuh Labyrinth from an Indian Book of Rituals

The figure originates from a contemporary Indian book of rituals. In this, a custom of unknown age, still in practice today, was described, in which the idea of a labyrinth is used to magically facilitate birth-giving. To Kern this is a modified Cretan type labyrinth. I attribute it to a type of it’s own and name it after Kern’s denomination type Cakra-Vyuh (see Related Posts: Type or Style / 14).

The seed pattern is clearly recognizable. One can well figure out that this labyrinth was constructed based on the seed pattern. Despite this, I hesitate to attribute it to the Classical style. For this, the calligraphic looking design deviates too much from the traditional Classical style. The walls delimiting the pathway all lie to a mayor extent, i.e. with about 3/4 of their circumference on a grid of concentric circles. Therefore it has also elements of the concentric style. The labyrinth even somewhat reminds me of the Knidos style with its seamlessly fitting segments of arcs where the walls delimiting the path deviate from the circles and connect to the seed pattern.

Therefore I have not attributed this labyrinth to any one of the known styles, but grouped it to other labyrinths (Type or Style /9). However, I had also drawn this labyrinth type in the Man-in-the-Maze style already (How to Draw a Man-in-the-Maze Labyrinth / 5).

SPCV

Figure 2: Composition of the Seed Pattern

Fig. 2 shows how the seed pattern is made-up. We begin with a central cross. Tho the arms of this cross are then attached half circles (2nd image). Next, four similar half circles are fitted into the remaining spaces in between. Thus the seed pattern includes now 8 half circles (3rd image). Finally, a bullet point is placed into the center of each half circle. We now have a seed pattern with 24 ends, that all lie on a circle.

In the pattern it can be clearly seen, that the labyrinth has an own course of the pathway. Therefore, to me it is a type of it’s own.

Typ Cakra Vyuh

Figure 3: Pattern

Furthermore it is a self-dual, even though, according to Tony Phillips, uninteresting labyrinth (Un- / interesting Labyrinths). This because it is made-up of a very interesting labyrinth with 9 circuits with one additional, trivial circuit on both, the inside and the outside.

Related posts:

 

°Kern, Hermann. Through the Labyrinth – Designs and Meanings over 5000 Years. Munich: Prestel 2000.

Read Full Post »

In the article by Richard Myers Shelton in Caerdroia 42 (March 2014)  there is the picture of a visceral drawing on a clay tablet which is older than those we have seen before (see related posts below).

Clay tablet with diagram

Clay tablet from Umma of Old Babylonian times, photo courtesy of the Louvre

The clay tablet with the visceral drawings was found in the old Sumerian city of Umma, the today’s Tell Jokha in Iraq. It dates from the time about 1900 – 1600 B.C. and you can now see it in the Louvre under the number AO 6033.
The photo can be found in the cuneiform digital library initiative of the University of California, Los Angeles, under the CDLI number P 386355.

Unfortunately, the tablet is damaged. Nevertheless, the missing lines can be reconstructed perfectly and then show the following plan:

The visceral drawing on tablet AO 6033

The visceral drawing on tablet AO 6033

The alignment reminds very strongly of the so-called Berlin labyrinth on the clay tablet VAT 744 at the Vorderasiatisches Museum of Berlin which is some hundred years younger.

The visceral drawing on tablet VAT 744

The visceral drawing on tablet VAT 744

Despite the resemblance the lines in the visceral drawing on tablet AO 6033 show a completely different labyrinth.
The path (Ariadne’s thread) inside the tablet ascertained from the boundary lines looks thus:

Ariadne's thread in the visceral drawing on AO 6033

Ariadne’s thread in the visceral drawing on AO 6033

Based on these lines I construct a geometrically exact figure consisting of arc elements. The midpoints of them can be arranged on a single line.

Ariadne's thread geometrically correct

Ariadne’s thread geometrically correct

After that I construct the boundary lines around the same midpoints and will obtain the complete labyrinth:

The labyrinth

The labyrinth

The alignment is completely different from the one of the Berlin labyrinth. In the middle there is a kind of a double spiral. Besides there are two turning points. The two sickle-shaped empty areas are remarkable.

Anyway we see an hitherto unknown walk-through labyrinth. Maybe even the oldest one proved so far? In any case, it is older than the example on the tablet of Pylos.

How should one name it? Referring to the proposals of Andreas maybe: The Babylonian Umma labyrinth.


Who would like to draw or build such a labyrinth as a walkable one? The following drawing offers the necessary information. The measurements are to be understood as units. So “1” can be: 1 cm, 10 cm, 60 cm, 1 metre, 1 yard, 1 foot, 2 feet, a step length, a stick and the like.

The layout drawing

The layout drawing

One best goes forward as follows: Fix a line, divide it into 16 parts, mark the mid points of the circles, then make the arcs with a string, wire, circle, tape or the like.  The radii are a multiple of the unity, so R2 means 2 times the unity etc.

The labyrinth can be drawn with compass and pencil on paper or can be scratched as a walkable labyrinth into the sand, strewn with sawdust or laid with stones or similar. The two accesses can be arranged by wish. It would make it easier to begin with the arcs above the line.

Related Posts

Read Full Post »

At the 22nd Zeiden neighborhood get-together on June 6th 2015 in Dinkelsbühl marching through the Wunderkreis was one of the highlights.

In my first post from June 21st 2015 I wrote extensively about the Wunderkreis itself and the more “technical” aspects (see Related Post below).

For those who want to know something more about the historical background, I recommend reading the article by Richard Myers Shelton in Caerdroia 44 or to get informed by the articles mentioned in Related Links. The people of Zeiden themselves have written about their traditions and their customs.

In this post, it’s more about the march through the Wunderkreis itself.

Set on a beautiful day in a beautiful environment, i.e. in the heart of the well-preserved medieval Dinkelsbühl, this event was one of the highlights at the 22nd Zeiden neighborhood get-together on the old pavement in front of the “Schranne”.

The temporary Zeiden Wunderkreis in Dinkelsbühl

The temporary Zeiden Wunderkreis in Dinkelsbühl

The through traffic was blocked off the Weinmarkt this afternoon and so many astonished tourists were marvelling at the white lines on the pavement.
A local baker (picture 7) baked about 250 Kipfel specially for this day. The march itself took about 15 minutes. After that the Zeiden brass band offered another open-air concert, where some brave couple even danced.

On this day I had the opportunity to meet the current neighbor father Rainer Lehni (pictures 8, 11) and the old neighbor father  Udo Buhn (Figure 20), and spoke with the people of Zeiden themselves.

Photogallery:

Clicking on a picture will open the carousel, clicking × in the top left-hand corner of the carousel, or the “Esc”- key on your keyboard,  will close it.

Numerous participants walked along the lines of the Wunderkreis to the sound of the traditional Kipfelmarsch, performed by the Zeiden brass band and were each rewarded with a Kipfel (croissant).

Probably we will now have to wait some more years until the next march through the Wunderkreis?

Although the original Zeiden Wunderkreis still exists in today’s Codlea (now Romania), it would be fine if the Zeiden Transylvanian Saxons could continue their tradition here in their new homeland of Germany with a new permanent Wunderkreis.

Note for TLS members: Read the excellent article by Richard Myers Shelton in Caerdroia 44 (April 2015) about the Transylvanian Wunderkreis.

Related Post

Further Links (Sorry, in German only)

The Zeiden Wunderkreis

The Zeiden Wunderkreis

Read Full Post »

Types of Labyrinths in Kern’s Book

Kern basically distinguishes between the Cretan type and all other types of labyrinths. For him, the Cretan type is a one-arm alternating labyrinth with seven circuits and the exact level sequence of 3-2-1-4-7-6-5 (see Kern°, fig. 5, p. 34).

KretTyp

Level Sequence of the Cretan Type Labyrinth in Kern°, fig. 5, p. 34

Labyrinths with such a level sequence of the pathway, irrespective of whether these rotate clock- or anticlockwise, show classical or concentric or other forms of layout, appear as petroglyphs, built of stone, drawings in manuscripts or else, are referred to as Cretan type labyrinths.

In all other labyrinths Kern sees variations or re-interpretations of the Cretan type Kern°, p. 27 and table pp. 28, 29). This refers not only to one-arm labyrinths with other numbers of circuits or level sequences of the pathway (such as e.g. Jericho type, Otfrid type), but also includes all labyrinths with multiple arms (e.g. roman mosaic labyrinths, Chartres type, Reims type labyrinths etc.). To summarize, we can find the following types of labyrinths in Kern’s book (Kern°, pp. 107 – 109).

  • Cretan; Cretan modified; Cretan (Jericho); Cretan modified, 6 circuits (Jericho); Cretan, 6 circuits
  • Chartres; Chartres modified; Chartres (Jericho); Chartres modified, 6 Umgänge
  • Otfrid
  • Reims

So, he differentiates between pure and modified types of labyrinths.

However, Kern’s claim was not to elaborate a typology. But for him the meaning of type was defined by the level sequence of the pathway. This particularly applies to his pure types. All labyrinths Kern had identified as being of the Cretan type, e.g. in the legends to the images, had the same level sequence. The same applies for the Chartres type labyrinths too. However in the modified types it is less clear.

It is fascinating to read how Kern in the first chapters of his book investigates the various leads of a possible genesis of the labyrinth. How he tries to fix a first historically documented appearance of the labyrinth. He does not find it in the „Cretan Labyrinth“ handed down by Plutarch, that has never existed as a building (chap. II). Nor can he find it in the buildings that have been named labyrinths in ancient times (chap. 3: the Egyptian Labyrinth, the Labyrinth of Lemnos / Samos, the Italian Labyrinth, Didyma, the Labyrinth of Nauplion). However, Kern states that the fundament of the Tholos of Epidauros is the only one historical building that can be justifiably referred to as a labyrinth.

Kern identifies other leads in the dances (chap. 2). However, he has to let it open, whether these have been danced in any labyrinthine form at all or even in the precise form of the Cretan type labyrinth.

But why then Kern gives the name „Cretan Labyrinth“ to this type identified by himself as the basic type?

He calls this type „Cretan“ after its presumed origin (p. 24), despite this presumption is in clear contradiction with the results of his own thorough research of the historical evidence. There is little doubt that this was the first type of labyrinth that can be documented reliably in history. Therefore it is absolutely justified to refer to it as the basic labyrinth. The first known historical examples of this type are not from Crete but from Pylos (Greece) or Galicia (Spain).

Kern, thus, has correctly identified the original type of labyrinth, but gave a name to this type that is against the results of his own research. To me it is a complete mystery why he did this.

Related posts:

°Kern, Hermann. Through the Labyrinth – Designs and Meanings over 5000 Years. Munich: Prestel 2000.

Read Full Post »

At the 22nd Zeiden neighborhood get-together in Dinkelsbühl (Bavaria, Germany) I could be present when the ambitious Zeiden helpers outlined the temporary Wunderkreis (translated literally wonder circle) on 6th June 2015.

Most of the Transylvanian Saxons in today’s Germany came from Transylvania (now Romania) originally and have a special connection to Dinkelsbühl through the association of the Transylvanian Saxons.

It is astonishing how long the tradition of marching through the Wunderkreis to the sounds of the historical Kipfelmarsch has been preserved.
For more information go to Further Links on the bottom of this page.

As a trained surveyor and “Labyrinthologist” I was mostly interested in how the knowledge of building the Wunderkreis has been passed on from one generation to the next. I could see the sketch and at the same time watch how they did it.

Zeiden Wunderkreis

Zeiden Wunderkreis, reconstructed using a sketch by the late Thomas Dück

Here the freehand sketch by Rainer Lehni for the work in situ:

Freehand sketch by Rainer Lehni

Freehand sketch by Rainer Lehni

At the first glance it looks unspectacular seeing only lines, some figures and few measurements. The lines show the way in the labyrinth, the so-called thread of Ariadne, which all walkers will follow. Therefore the lines do not represent the boundary lines, as they usually do in other labyrinths.

The internal structure of a labyrinth is the most important property which is displayed in the path sequence for example. In this case we can find a double spiral and a meander, based on a triangle. The two accesses to the labyrinth, named as start and end in the drawings, are a specific feature. In the middle the direction changes, therefore we speak of a pass-through labyrinth.

In the following pictures we watch the “supporting workers” of the Wunderkreis doing their job.

Clicking on a picture will open the carousel, clicking × in the top left-hand corner of the carousel, or the “Esc”- key on your keyboard,  will close it.

Being a trained surveyor I was able to convert this into a drawing (see below).

The Zeiden crew chose 60 cm as a basic measure, this is the distance from line to line, being the path width at the same time. All further measures result from there. The smallest semicircle has a radius of 30 cm; in distance of 60 cm the additional elements follow. The biggest diameter (the belly extent) in the outermost circuit (named 1 in the drawing) amounts to 13.80 m. The length of the whole way through the Wunderkreis amounts to ca. 236 m.

The level of efficiency (detour factor) is 37 or even 40, if one begins at the end.

The whole labyrinth is composed of curve sections which are determined from four central points (M1 – M4), joined together without sharp bends. The order while marking out the curve sections could be any. Nevertheless, it is more useful to begin with the upper semicircles (in Green) around M4. Afterwards the curves around M3 (brown) and in the end those around M2 and M1 will follow.

The main construction points (M1 – M3) form a triangle. M4 is added to the left. One should mark out these points before drawing the curve elements. Thereby one gains a better overview of the location of the Wunderkreis on site.
The “base line” between M1 and M2 could be narrowed down a little.

While walking the Wunderkreis, at first the five external circuits (1 – 5) are wandered through. These correspond to a simple labyrinth. The following seven circuits (6 – 12), built by closely intertwined spiraling curves, correspond to a double spiral with the change of direction in the middle of a meander.

The entry into the labyrinth takes place to the right in the 5th circuit, the exit in the 7th circuit.

When the marchers come out of the exit they will be rewarded with a Kipfel (croissant), a unique custom worldwide .

The layout drawing

The layout drawing

The following photos show the the main construction lines in blue, the situation of the central points in red, and the numbering of the circuits from the outside inwards from 1 to 12. Through that we can get the so-called path sequence, the order in that the circuits strode through, such as start-5-2-3-4-1-6-8-10-12-11-9-7-end. This is so to speak the internal structure of the Wunderkreis, virtually the rhythm.

Lines on the cobbles of Dinkelsbühl

Lines on the cobbles of Dinkelsbühl

The construction lines (in Blue) and the midpoints (in Red)

The construction lines (in Blue) and the midpoints (in Red)

The numbering of the lines from the outside inwards

The numbering of the lines from the outside inwards

Ready to go

Ready to go

So, and now we are ready to go. The following photos show that the march through the Wunderkreis may be confusing at first sight.

A little tip: Follow the red point in the pictures 1 – 16 on the way through the Wunderkreis, because it marks the leader.

Clicking on a picture will open the carousel, clicking × in the top left-hand corner of the carousel, or the “Esc”- key on your keyboard,  will close it.

In the history of the labyrinth the miracle circles (even called “Wunderkreis” in English) represent a unique form of the labyrinth which existed and still exists in Germany and the Baltic countries.

We know some Wunderkreise from the literature.
Among the four historical remaining labyrinths in Germany we count the Wheel in the Eilenriede in Hannover (originally from 1642), and the Kaufbeuren Wunderkreis (originally from 1846), rebuilt after historical documents in 2002 in the Jordanpark of Kaufbeuren (read more in Caerdroia 34).

The first Wunderkreis of Eberswalde from 1609 was honoured in 2009 to the 400-year-old jubilee with a loyalty thaler and the third Wunderkreis was rebuilt in 2013 after historical documents on the Hausberg.

Although the Zeiden original Wunderkreis exists still in today’s Codlea (now Romania), it would be fine if the Zeiden Transylvanian Saxons could continue their tradition here in their new homeland Germany with a new permanent Wunderkreis.

This would be a wonderful contribution to the cultural history of the labyrinth with this unique Zeiden Wunderkreis and its special characteristics.

… To be continued

Hint for TLS members: Read the excellent article from Richard Myers Shelton in Caerdroia 44 (April 2015) about the Transylvanian Wunderkreis.

Related Post

Further Links (Sorry, in German only)

The Zeiden Wunderkreis

The Zeiden Wunderkreis

Read Full Post »

I have already written about the Babylonian visceral divination labyrinths and tried to prove their relationship with the labyrinth. They date to the Middle Babylonian and Neo-Babylonian time (ca. 1500 to 500 BC).

However, there are even older labyrinth representations from Old Babylonian time (ca. 2000  to 1700 BC) which look quite differently than the visceral labyrinths and which can probably be taken for the ancestors of the labyrinth.

The Swedish historian of Babylonian mathematics and cuneiform script expert Jöran Friberg has studied the Babylonian mathematical  tablets of the Norwegian Schøyen Collection in detail and has documented that in 2007. He calls the following figures simply labyrinths, probably without giving reasons for it.

In the journal Caerdroia 42 Richard Myers Shelton has written extensively on the subject of the labyrinth. Most of my information I got from him. Here it is a matter for me of founding in what the relationship with the labyrinth consists.

One must take therefore the following representations as the oldest labyrinths known so far.

Here a rectangular labyrinth labelled MS 3194 in the Schøyen Collection:

The rectangular labyrinth MS 3194

The rectangular labyrinth MS 3194, source: Schøyen Collection

We do not know anything about the purpose of this figure. It could have served quite philosophical or mathematical considerations.

In what does the relationship with the labyrinth exist now?

We must look at it more exactly. Richard Myers Shelton could reconstruct the lines on the clay tablet perfectly and therefore I can present a colored drawing of the entire figure.

The rectangular Babylonian labyrinth

The rectangular Babylonian labyrinth

The thin black lines limit the ways. These are the free space between the lines. There are two open entries to the rectangle. One entrance lies roughly in the middle of the left side, the other one opposite on the right. The way from the left is highlighted in green, from the right in purple. In the middle they meet and change the direction. The one way is leading in, so to speak, and the other out.

There are no forks or dead ends. The whole, long and winding path must be accomplished. The entire rectangle is crossed.

The layout shows a certain, but not quite successful symmetry. The last laps round the center remind a double spiral. The other circuits are intertwined in the shape of meanders.

We have thus an unambiguous, doubtless and purposeful way through a closed figure, as we know it from a “true” labyrinth.

Then there is still a square labyrinth labelled MS 4515. Here the colored drawing:

The square Babylonian labyrinth

The square Babylonian labyrinth

Maybe it should represent a town? As we know that from other labyrinths. With gates, bastions, walls?


Amongst the Babylonian tablets is another one with geometrical illustrations. Jöran Friberg calls them mazes. They are quite sure not.

One could consider these lines as labyrinthine finger exercises. Some are difficulty to reconstruct. So, Friberg and Shelton come to different results.

There are two rows with four fields in which a rotationally symmetric closed path runs without beginning and end through four sectors. All areas are mostly touched, sometimes there are inaccessible places. One is reminded of the Roman sector labyrinths many centuries later.

The tablet MS 4516

The tablet MS 4516, source: Schøyen Collection

Here the drawings of two fields:
The first field on top left

The first field on top left

The fourth field on bottom left (reconstructed)

The fourth field on bottom left (reconstructed)

Clearly one recognises the meander, the symmetrical arrangement and the alignment of the paths between the black lines.

Much later similar representations on the silver coins of Knossos are found:

Swastika meander

Swastika meander on a coin, 431-350 BC / source: Hermann Kern, Labyrinthe, 1982, fig. 49 (German edition)

The right “ingredients” for a labyrinth, namely meander and spiral were already known in Old Babylonian times. The idea of a confusing, winding, nevertheless unequivocal way in a restricted space with rhythmical movement changes can have originated from there.

We can push back the time for the origin of the labyrinth some hundred years later to the time about 1800 BC. At first it was the idea of a walk through labyrinth. The further development happened in Middle to New-Babylonian times in the intestinal labyrinths with also two entries, yet unambiguous way.

Since 1200 BC we know the Cretan labyrinth with only one entry and the end of the path in the center. We could call this a way in labyrinth whereas the Babylonian labyrinth is a way through labyrinth.

Till this day have remained walk through labyrinths in the type of the  Baltic wheel and the Wunderkreis (wonder circle). We recognise them as real labyrinths, although they also have two entrances and do not end in the middle.

The Kaufbeuren Wunderkreis

The Kaufbeuren Wunderkreis

More information is to find about the Babylonian labyrinths in an excellent article by Richard Myers Shelton in Caerdroia 42 (March 2014), and in a new article from him in Caerdroia 44 (April 2015) about the Transylvanian Wunderkreis.

Related Posts

Further Links

Read Full Post »

Via Facebook  I have found this modern walk through labyrinth:

Walk-through labyrinth with meanders

Drawing by kind permission of © Sergej Likhovid

The drawing is sketched for a labyrinth by Sergej Likhovid, that was structured in an abandoned swimming pool in Odessa (Ukraine). See more about the project in a news article in the Further Links at the bottom. Besides, it is a sector labyrinth and uses the meander. And with that we get onto the subject of the post:

In the history of the labyrinth the meander plays a big role. The meander can be traced back till the Neolithic Age. So the meander is much older than all up to now known labyrinth figures (on the tablet of Pylos in 1200 B.C.). When was the first combination meander – labyrinth? The connection with the labyrinth can be presumably proved now till the Babylonian time (about 1800 B.C.).

In the 1st part I have already introduced the labyrinth from fig. 5 of the Near East clay tablet VAT 9560 in Weidner’s article. The tablet is dated by him based on the attributed cuneiform inscriptions to the time about 1000 B.C.

The visceral labyrinth VAT 9560, fig. 5 (Ariadne's thread)

The visceral labyrinth VAT 9560, fig. 5 (Ariadne’s thread)

On this representation of the path’s structure (the so called Ariadne’s thread) one can recognize very nicely the meander in the middle.

Here the geometrically correct representation of the limitation lines:

The visceral labyrinth VAT 9560, fig. 5 (the lines)

The visceral labyrinth VAT 9560, fig. 5 (the lines)

In this drawing the basic pattern can be read. It has an amazing resemblance with that for the Indian labyrinth, nevertheless, is a little bit differently constructed.

In Weidner’s script there is still fig. 4 of the tablet VAT 9560. Though the figure is incomplete, however, it shows clearly an access on the top left and the end in the middle:

The visceral labyrinth VAT 9560, fig. 4

The visceral labyrinth VAT 9560, fig. 4

The both lines on the right side can be reconstructed unambiguously, and the completed figure shows a labyrinth:

Drawing of the complete visceral labyrinth VAT 9560, fig. 4

Drawing of the complete visceral labyrinth VAT 9560, fig. 4

Here the graphics in a geometrically correct manner:

Graphics of the visceral labyrinth VAT 9560, fig. 4

Graphics of the visceral labyrinth VAT 9560, fig. 4

The comparison of the different labyrinths from fig. 5 and fig. 4 shows within the triangle in the geometrically correctly drawn representations an identical pattern. And this is identical again with a quite known basic pattern, namely of the Indian labyrinth (also called Chakra Vyuha). Read more about the Indian Labyrinth on Related Posts at the bottom.

The seed pattern for the Indian labyrinth

The seed pattern for the Indian labyrinth

Only the connection of the dots and lines is a little bit differently for the walk through labyrinth after fig. 5. For the Indian labyrinth (and the one of fig. 4) one begins in the triangular seed pattern on top and makes the first curve down to the next line end below on the right side. And then one connects all the further line ends and dots in usual manner as for the classical labyrinth in parallel arcs to the first curve. For the walk through labyrinth after fig. 4 one also begins on top, pulls the first curve, nevertheless, to the second line end. The rest is constructed again as usual.

The Indian labyrinth is still known in other variations. Here an illustration from Hermann Kern’s book:

The Indian labyrinth

The Indian labyrinth, source: Hermann Kern, Labyrinths (2000), fig. 607, p. 287

The Indian labyrinth is very old, but the origin is not so easily to prove. Who has discovered the basic pattern for it, to my knowledge is unknown, may presumably have occurred in newer time.

To my conviction one may consider the Babylonian labyrinths as genuine labyrinths, even if most of them are walk through labyrinths. They follow a different paradigm than our usual Western notion of a single path ending at the center. Nevertheless, we can count them to the real labyrinths, like we do it with the Baltic wheel and the Wunderkreis of Kaufbeuren, as well as with many other contemporary creations.

In the meantime I could find about 50 different walk through and intestinal labyrinths from Babylonian time. Whether a mutual influence under these different cultural spheres existed, is uncertain, and which is now the oldest historically manifested labyrinth, is not yet proved.

However, another example of a divination labyrinth from Mesopotamia from about 1800 B.C. could outstrip the clay tablet of Pylos from 1200 B.C. On the website of Jeff Saward I found a picture of it (more on the Links below). Here a drawing of it:

The Mesopotamian divination labyrinth from 1800 B.C.

The Mesopotamian divination labyrinth from 1800 B.C.

It is certainly not comparable directly with the classical labyrinth, nevertheless, a closer look at it is worthwhile and shows the relationship to the labyrinth figure.

Following graphics with the representation of the lines, the normally hidden path (Ariadne’s thread in Red) in a geometrically correct way:

Graphics of the Mesopotamian divination tablet from 1800 B.C.

Graphics of the Mesopotamian divination tablet from 1800 B.C.

It looks quite differently than we would have expected. However, it has only one entrance and an end in the middle. Though the middle is below, but here ends the way. The path spirals upwards and turns down through a meander. Spiral and meander are united in one figure. The way is unequivocal, fills the whole space, have no forks and dead ends, must be absolved completely, leads to a goal – and turns back to the outside. Even if the lines would be open in the middle below, the diagnosis “Labyrinth” would be kept up.

… To be continued

More information about the Babylonian clay tablets can be found in an excellent article from Richard Myers Shelton in Caerdroia 42 (March 2014).

Related Posts

Further Links

Read Full Post »

Older Posts »

%d bloggers like this: