Crossing Labyrinths with Multiple Axes

In addition to the three labyrinths with one axis from my last post (see: related posts 1, below) there are also 7 historical labyrinths with multiple axes and with their pathway crossing the main axis. Of these, I want to present here four very different examples from Roman times until the 18th century together with their patterns. I have already shwon on this blog how the pattern can be obtained in crossing labyrinths (related posts 2). 

The oldest crossing labyrinth with multiple axes is the polychrome mosaic labyrinth in the Roman proconsul’s residence, House of Theseus, at Kato Paphos, Cyprus dating from 4 CE (fig. 1). Presented is the Ariadne’s Thread as a guilloche ribbon. The pathway starts from a dead-end on the first circuit. After completion of the full circuit, it crosses the main axis and describes a sector labyrinth with four axes on circuits 2 – 6. Then follows a full 7th circuit that leads into a closed 8thcircuit. 

Figure 1. Theseus
Figure 1. Theseus

Figure 2 shows the labyrinth of Bayeux Cathedral from the 13 CE. This has 4 axes and 10 circuits. The pathway crosses the main axis on the innermost circuit. 

Figure 2. Bayeux
Figure 2. Bayeux

A strange labyrinth is depicted on a plaquette from Italy of the 16th century. It has 6 axes that are distributed irregularly. There is a flaw between the third and fourth axis, where there is an encapsuled piece of a pathway that is not accessible. This piece circulates on the second and third circuit but has no connection with the pathway that leads from the entrance to the center of the labyrinth. Furthermore, the pathway crosses the main axis three times. This labyrinth can be easily reduced to three axes. 

Figure 3. Plaquette
Figure 3. Plaquette

Also in this design for a hedge labyrinth from year 1704, the pathway crosses the main axis twice and then ends peripherally in a dead-end (fig. 4). 

Figure 4. Liger
Figure 4. Liger

All these crossing labyrinths with multiple axes show particularities. Theseus has no entrance and no center, Bayeux is uninteresting, as it has simply a complete circuit added at the inside. The plaquette is drawn faulty and unnecessary complicated. And in Liger, no center can be spotted. 

Related Posts:

  1. Crossing Labyrinths
  2. The Pattern in Non-alternating Labyrinths

Crossing Labyrinths

Most of all labyrinths we know are alternating labyrinths. In these, the pathway does not traverse the main axis. Every time it arrives at the end of a circuit it changes direction and skips to another circuit. 

However, there exist some few labyrinths with the pathway crossing the main axis. This means, it does not change direction but only skips to an other circuit whilst following a piece along the axis. Up to now I simply have termed these „non-alternating“ labyrinths, since „alternating“ can be considered the rule. If we don’t want to term the property negatively („non-alternating“), we could also use terms such as „traversing“ or „crossing“. From now on, I will use the term „crossing labyrinths“ for such labyrinths. 

Whether a labyrinth is alternating or crossing, this refers to its main axis only. That is the axis where the entrance to the labyrinth and also the access to the center are situated. In labyrinths with one axis, there is only the main axis. Labyrinths with multiple axes, have also side-axes in addition to the main axis. Note that the pathway always must traverse the side axes. Otherwise, no side axes could be designed. 

Among the 87 types of labyrinths in my catalogue of historical labyrinths (see: further links, below), 10 are crossing, the others alternating. Here, I will show the three crossing labyrinths with one axis once more. All three have already been presented on this blog. 

The most remarkable crossing labyrinth is the labyrinth of St. Gallen. 

Figure 1. Labyrinth of St. Gallen
Figure 1. Labyrinth of St. Gallen

It has been repeatedly confused on this blog with the alternating labyrinth with 6 circuits and the same sequence of circuits, of which no historcal example is known (related posts 1 and 2).

Another very beautiful crossing labyrinth is the one by Al Qazwini (related posts 3). 

Figure 2. Labyrinth by Al Qazwini
Figure 2. Labyrinth by Al Qazwini

The third crossing labyrinth with one axis is Folio 53r by Sigmund Gossembrot (related posts 4).

Figure 3. Labyrinth Gossembrot Folio 53r
Figure 3. Labyrinth Gossembrot Folio 53r

All three are interesting crossing labyrinths, in which the pathway does not enter on the first circuit nor reach the center from the last circuit. In St. Gallen and Qazwini it traverses on the full distance of the axis, in Gossembrot 53r only one part of the axis (from the 6th to the 9th circuit).

Related Posts:

  1. How to Turn a Meander into a Labyrinth
  2. Listening to the Labyrinths
  3. The Labyrinth by Al Qazvini
  4. Sigmund Gossembrot / 5

Further links:

The Labyrinth on the Silver Coins of Knossos, Part 3

There are now digital coin collections in which I have found more coins with labyrinth representations. This is primarily the network of University coin collections in Germany (link below).

In the common portal of the NUMiD group (also link below) I have now found ten coins with the search term: Labyrinth Knossos, of which I would like to show here 5 pieces with the labyrinth of the reverse side.

All of these works and their content are licensed under a Creative Commons Attribution – Non-Commercial – Distribution Alike 3.0 Germany License.


There are two coins in the coin cabinet of the Würzburg University.

One with the object number ID373 shows the head of Hera on the obverse side, and the 7 circuit labyrinth on the reverse side.

The 7 circuit labyrinth
The 7 circuit labyrinth

The second coin with the object number ID375 shows the head of Apollo on the obverse side, and a male figure sitting on a labyrinth on the reverse side. This has 5 circuits and should be one of the “faulty” silver coins from Knossos.

The faulty labyrinth
The “faulty” labyrinth

I also found two coins at the Erlangen University.

One with the object number ID134 shows the head of Hera on the obverse side, and the labyrinth of the Minotaur on the reverse side.

The 7 circuit labyrinth
The 7 circuit labyrinth

The other with the object number ID135 shows the head of Zeus on the obverse side, and the labyrinth of the Minotaur on the reverse side.

The 7 circuit labyrinth
The 7 circuit labyrinth

Then there is the Münster University with one coin. It has the object number ID1316, and shows on the obverse side Zeus as a bull with Europa sitting on his back. The reverse side shows the labyrinth of the Minotaur, which is unfortunately a bit difficult to recognize.

The 7 circuit labyrinth
The 7 circuit labyrinth

In the digital coin cabinet of the Academic Art Museum of the Bonn University I found another coin from Knossos under the inventory number G.34.07.

It shows the head of Zeus on the front and a square labyrinth on the back.

The 7 circuit labyrinth
The 7 circuit labyrinth

I strongly recommend visiting the digital coin collections: For additional information and to view coins not shown here.

Further Links

  • Related Posts

Pseudo Single Barrier

As was the case with double-barriers, we can also distinguish real from pseudo single-barriers (see: related posts, below). Here I want to show this first with the examples of two non-labyrinthine figures. I start with the figure „Luan“ (fig. 1).

Figure 1. Figure Luan
Figure 1. Figure “Luan” 

Source: Kern, fig 604, p. 285

This is a recent sand drawing of the Stone Age culture on Melanesian island Malekula (Vanatu). Kern writes, that this figure is not a labyrinth and cannot not even with any sound justification be considered misinterpreted labyrinth (Kern, p. 285). It is made-up of a uninterrupted line without entrance or center. However, it has 4 axes and 5 circuits. 

In fig. 2, left image, I show a simpler version of it with only 3 circuits. This better illustrates the principle of its design. This figure clearly can be read as an uninterrupted Ariadne’s Thread, and therefore I have drawn it in red. Of course, we can also add the representation with the walls delimiting the pathway (right image, blue). As can be seen, this figure has a certain similarity with a labyrinth. The axes are formed by the same turns of the pathway that typically appear in the labyrinth of Chartres and many other types of labyrinths. 

Figure 2. Figure Luan, Reduced to 3 Circuits
Figure 2. Figure “Luan”, Reduced to 3 Circuits

In figure 3, I have redrawn the figure from fig. 2 and reduced it to 2 axes. The left (red) image shows the representation with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway. Still, the Ariadne’s Thread is a uninterrupted line without entrance or center. Here we can see the special course of the pathway at the side axis. The two turns of the path are shifted one circuit against each other. In between, an axial piece of the pathway is inserted where the path changes from the first to the third circuit without changing direction. Analogically with the double barriers we can term these courses single barriers. The course of the pathway in figure 2 is a real, the one in fig. 4 a pseudo single barrier (see related posts, below). 

Figure 3. Redrawing with 2 Axes and Pseudo Single Barriers
Figure 3. Redrawing with 2 Axes and Pseudo Single Barriers 

This figure can easily be transformed to a labyrinth with 2 axes and 3 circuits, as shown in fig. 4. The left (red) image shows the representation of the labyrinth with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway. 

Figure 4. Labyrinth with 2 Axes and 3 Circuits
Figure 4. Labyrinth with 2 Axes and 3 Circuits

As far as I know, the pseudo single-barrier has appeared in two historical labyrinths (fig. 5). The left image shows the pavement labyrinth in Ely Cathedral with 5 axes and 5 circuits. The pseudo single-barrier is situated at the second axis where the path changes from the fourth to the second circuit without changing direction. The right image shows the third out of 8 labyrinth drafts by the clergyman Dom Nicolas Rély. This labyrinth, that I called Rély 3, has 9 axes and 5 circuits. The axes are designed as real (axes 1, 2, 4, 6, 8) and pseudo (axes 3, 5, 7) single-barriers.

Figure 5. Historical Labyrinths with Pseudo Single Barriers
Figure 5. Historical Labyrinths with Pseudo Single Barriers

Sources: Ely – Saward, p. 115; Rély 3 – Kern, fig. 457a, p. 241.

References:

  • Kern H. Through the Labyrinth: Designs and Meanings over 5000 years. London: Prestel 2000. 
  • Saward J. Labyrinths & Mazes: The Definitive Guide to Ancient & Modern Traditions. London: Gaia 2003.

Related Post: