Feeds:
Posts
Comments

Archive for the ‘Design’ Category

The Wunderkreis and the Baltic Wheel are compound labyrinths which are constructed from curves around different centres. The two lower turning points are proper for the “labyrinthine” circuits, those in the middle for the double spiral.

A Baltic wheel has a bigger, empty center and a short second exit. This is already a double spiral, yet without more twists. Both accesses are normally separated by an own intermediate piece, a sort of shoehorn.

The pattern for the layout is the same one for both labyrinth types. The tool to produce the layout is also the same. The number of the circuits in all can be different, nevertheless.

Here it is only about the method. The geometrically correct construction is another thing again. There are already several posts in this blog about that.

There is no seed pattern like we have it for the well-known classical labyrinth. However, there is a basically very simple method to draw such a labyrinth or to lay it directly with stones or to scratch it in the sand.

A step-by-step instruction should show it. The boundary lines of the labyrinth are drawn, the path runs between the lines.

Step 1

Step 1

Step 1: I draw half a curve upwards, from the left to the right.

Step 2

Step 2

Step 2: I jump a little bit to the left, make a curve downwards to the left, walk round the first curve and land to the right of the preceding curve.
This would already be the center of the Baltic Wheel or the middle of the smallest possible Wunderkreis.

Step 3

Step 3

Step 3: Nevertheless, the double spiral should become bigger. Hence, I jump again a little bit to the left at the end of the first curve in green, make an other curve downwards to the left and walk again round the preceding curves.
Thus I could continue any desired. There must be left on the right side, however, always two free curve ends. With that the double spiral would be finished inside the Wunderkreis.

Step 4

Step 4

Step 4: Now I must add at least three semi-circular curves round the previous lines.
If I want to have a bigger labyrinth, I can add more lines in pairs. There must however be an odd number of curves.
In our example we now have on the left side three free line ends, and on the right side five.

Step 5

Step 5

Step 5: Now I connect on every side the innermost and the outmost lying free line in such a manner that in between an access is possible. This is to be continued (here only on the right side) so long as on every side only one single line end is left.

Step 6

Step 6

Step 6: The both on every side lying free line ends are extended forwards. They represent the both lower turning points.
The labyrinth is finished.

Finally we will check out if the drawing is correct. We go in between the lines, turn to the right or to the left and must come again to the starting point. If not, something must be wrong.

Best try it out yourself, with a pencil on a sheet of paper. Wishing you success.

Related Posts

Read Full Post »

An interesting labyrinth is reproduced in the book of Kern (fig. 200, p. 119)°. A drawing by Arabian geographer Al Qazvini in his cosmography completed in 1276 is meant to show the ground plan of the residence of the ruler of Byzantium, before the large city of Constantinople was built up.

This non-alternating labyrinth has 10 circuits and a unique course of the pathway. I will show this using the Ariadne’s Thread and the pattern. In my post “From the Ariadne’s Thread to the Pattern – Method 2” (see related posts, below), I have already described how the pattern can be obtained. When deriving the pattern I always start with a labyrinth that rotates clockwise and lies with the entrance from below. The labyrinth by Qazvini rotates in clockwise direction, however it lies with the entrance from above. Therefore I rotate the following images of the labyrinth by a semicircle so that the entrance comes to lie from below. So it is possible to follow the course of the pathway with the Ariadne’s Thread and in parallel see how this is represented in the pattern.

Four steps can be distinguished in the course of the pathway.

Phase 1

The path first leads to the 3rd circuit. The entrance is marked with an arrow pointing inwards. In the pattern, axial sections of the path are represented by vertical, circuits by horizontal lines. The way from the outside in is represented from above to below.

Phase 2

In a second step, the path now winds itself inwards in the shape of a serpentine until it reaches the 10th and innermost circuit. Up to this point the course is alternating.

Phase 3

Next follows the section where the pathway leads from the innermost to the outermost circuit whilst it traverses the axis. In order to derive the pattern, the labyrinth is split along the axis and then uncurled on both sides. As the pathway traverses the axis, the piece of it along the axis has to be split in two halves (see related posts below: “The Pattern in Non-alternating Labyrinths”). This is indicated with the dashed lines. These show one and the same piece of the pathway. In the pattern, as all other axial pieces, this is represented vertically, however with lines showing up on both sides of the rectangular form and a course similarly on both sides from bottom to top.

Phase 4

Finally the pathway continues on the outermost circuit in the same direction it had previously taken on the innermost circuit (anti clockwise), then turns to the second circuit, from where it reaches the center (highlighted with a bullet point).

Related Posts:

°Kern, Hermann. Through the Labyrinth – Designs and Meanings over 5000 Years. Munich: Prestel, 2000.

Read Full Post »

Among the Wunderkreise there are some variations:

  • Some with two entries like the Zeiden Wunderkreis
  • Some with one access, but a bifurcation such as the Russian Babylons and the examples of Kaufbeuren or Eberswalde
  • Some with a nearly perfect double spiral like the Zeiden Wunderkreis
  • Some with a “pulled apart” double spiral such as the Russian Babylons, the example of Eberswalde and some Swedish and Finnish examples

The Babylonian Wunderkreis

Wunderkreise are compound labyrinths which are constructed from curves around different central points. Both lower turning points are proper for the “labyrinthine” circuits, the ones in the middle for the double spiral.
The double spiral in the Zeiden Wunderkreis is made from two centres lying side by side, and with it a total of only four centres the whole Wunderkreis can be constructed.

Here a Swedish example with a pulled apart double spiral from the book of Hermann Kern:

Petroglyph on the Skarv Island (Sweden)

Petroglyph on the Skarv Island, Source: Hermann Kern, Labyrinthe, 1982, fig. 584 (German edition); Photo: Bo Stiernström, 1976

A geometrically correct construction for a Wunderkreis with pulled apart double spiral requires more centres. Thus I receive for the Russian Babylons a total of six centres.

A sort of prototype with the dimension between axes of 1 m should serve as example. All values are thereby scaleable and differently big labyrinths can be constructed.

Construction elements

Construction elements

Best of all one begins by defining M1. After that one determines the direction of the perpendicular bisectors of the sides, and then constructs step by step the remaining mid points M2 to M6 through building the intersection of the triangle sides from two known points. All thereto necessary measurements are contained in the drawing.

The main dimensions

The main dimensions

The radii refer in each case to the middle axis of the boundary lines. The way runs between these boundary lines and, hence, is the empty space between these lines.

The different radii

The different radii

Here are the above shown components in one drawing as a PDF file to look at, to print or to copy.

Related Posts

Read Full Post »

The Babylons are surely related to the widespread Troy Towns of the European North. However, they look a little bit different.
Directly after the entrance there is a bifurcation and therefore it is possible to go on in two directions. And then often there is no real middle, but rather you are headed back in a double spiral.

The Troy Town of Visby (Gotland Island, Sweden)

The Troy Town of Visby (Gotland Island, Sweden), Source: Ernst Krause, Die Trojaburgen Nordeuropas, 1893, fig. 1, p. 4

However, how could they have developed?
Numerous stone labyrinths have survived down to the present day in Fennoscandia. The Babylons are to be found particularly in the eastern area, from Finland up to the Russian Kola Peninsula. Often they are situated near the coast and on islands. The natives of Northern Europe, the Sami, settled here. It is possible that the Babylons deal with the traditional Sami religion.
They have presumably originated from the 13th century on until our times. And they were built in the same way: With stones fist-sized to head-sized laid down on the ground.

However, why do the Babylons look different and do not follow the well-known seed pattern with cross, angles and four dots? Much Scandinavian Troy Towns have eleven circuits and have been laid after the enlarged seed pattern.

The 11-circuit Cretan (Classical) labyrinth with the seed pattern of the cross, the four double angles and the four dots

The 11-circuit Cretan (Classical) labyrinth with the seed pattern of the cross, the four double angles and the four dots, on the right in a round shape

Thereby divergences and variations appeared. This can happen quite easily through this construction method.
Thus there are Swedish Troy Towns with the open cross which enables to take two directions to reach the middle, and to organise a race, e.g. This is why these also often are called “Jungfrudans” or “Jungfruringen”.

9-circuit stone labyrinth (Jungfruringen) at Köpmanholm (Sweden)

9-circuit stone labyrinth (Jungfruringen) at Köpmanholm (Sweden), Source: © John Kraft, Die Göttin im Labyrinth (1997), fig. 7, p. 26 (German edition)

In the seed pattern for this labyrinth double angles only were used in the lower area. So we have 9 circuits.

Here the layout for a 11-circuit labyrinth:

The 11-circuit Cretan (Classical) labyrinth, on the right with open cross

The 11-circuit Cretan (Classical) labyrinth, on the right with open cross

In the report of Budovskiy I found a graphics (from 1973?) by Prof. Kuratov who has carried out a division of labyrinths and wanted probably show how the Babylon developed (see the sketched line in the graphics).

The table of Prof. Kuratov

The table of Prof. Kuratov

In the first column a sort of principle is to be seen. As first the whole Cretan labyrinth. In the second the left-handed spiral, in the third the right-handed spiral, then the double spiral and below circles.
In row Ia we see the Cretan type in different variations.
In row Ib the open cross and a decreasing middle.
In row II a right-handed spiral and the faulty stone setting discovered by Karl Ernst von Baer (1792 – 1876) in 1838 on the island of Wiehr.
In row III the Babylon with the double spiral.
In row IV some multiple-arm labyrinths which remind of the medieval labyrinths.

The open cross occurs several times under the Scandinavian labyrinths. Besides, the empty middle sometimes becomes smaller and then even slides under the two upper turning points. Finally, it is only indicated and then left out completely.

The drawing of John Kraft shows this:

The Troy Town of Nisseviken (Sweden)

The Troy Town of Nisseviken (Sweden), Source: graphic by © John Kraft in Gotländskt Arkiv 1983 on Gotlands trojeborgar, p. 87

I have found in a report about the Babylons on WeirdRussia, beside numerous photos, also this graphic :

Stone setting on the Bolshoi Zayatsky Island

Stone setting on the Bolshoi Zayatsky Island

The middle exists next to nothing. It is rather a niche or a widening of the way. In this area small stone heaps are sometimes stacked up. Should they show the gate to the underworld or the belly of the snake? The ends of the boundary lines are thickened. This is quite easy to make with some more stones.
The labyrinth has changed its meaning, with this its appearance and became the walk-through labyrinth.

Here the layout in geometrically correct form:

 

Babylon Solovki

Babylon Solovki

Presumably most of the Babylons correspond to this shape.

On this photo one can recognise very well the alignment.

There is a graphic with a little “rounder” double spiral in the table of Prof. Kuratov and in Vinogradov’s report which I have still shown in my last post (see below).

There are  obviously some among the Finnish stone settings which look rather so.

Graphics of a Babylon according to Vinogradov

Graphics of a Babylon according to Vinogradov

According to most of the photos the Babylons doesn’t look exactly like this. The entrance is narrower and has a short straight piece.

Actually, one must consider them as a Wunderkreis. Even if they don’t have such a perfect double spiral like the Zeiden Wunderkreis. The Wunderkreise of Kaufbeuren or Eberswalde matches more likely the Babylons.

How could one call this type? In the last post I had suggested: Babylonian Wunderkreis. However, now I tend rather to Sami Wunderkreis because it developed in the cultural area of the Sami and probably was used in the cult of the dead.

Related Posts

Further Links

Read Full Post »

The notation using coordinates is consistent, understandable and works well in alternating and non-alternating one-arm and multiple-arm labyrinths. However it has a particular property. Whereas in multiple-arm labyrinths the number of segments is obtained by multiplying the number of arms with the number of circuits, this is not sufficient in one-arm labyrinths. They necessitate a partition in two segments per circuit. And thus the sequence of segments has the same length in one-arm and two-arm labyrinths with the same number of circuits.

I will show this here with the example of a two-arm labyrinth with 7 circuits.

This is a labyrinth I had designed during the course of my studies on the labyrinth of the Chartres type and its further developments.

According to the number of arms and circuits, this labyrinth has 14 segments. The corresponding sequence of segments is:

Now let us remember the sequences of segments in th one-arm labyirnths from the last post. For comparison I show here the sequence of segments of the basic type labyrinth.

This also has 14 numbers and thus has the same length as our two-arm labyrinth.

Related posts:

Read Full Post »

In part 1 (see Related Post below) about the simplified seed pattern I only have spoken of the enlargement of labyrinths.

The seed pattern

But of course the number of circuits also can be reduced by this way. This is possible for all labyrinths built from this seed pattern, as well as for all containing this pattern. I would like to call them compounded labyrinths.

For me this are the Indian Labyrinth, the Baltic Wheel and the Wunderkreis. They all have only two turning points, however, the middle is formed in each case differently.
The Indian Labyrinth (Chakra Vyuha) contains a spiral, the Baltic Wheel has a big empty middle and a second access, the Wunderkreis contains a double spiral and also has the second access.

Here the Indian Labyrinth which can be generated through a seed pattern contained in a triangle:

The Indian Labyrinth

The Indian Labyrinth

The Indian Labyrinth with two more circuits:

The enlarged Indian Labyrinth

The enlarged Indian Labyrinth

Here the Baltic Wheel. The middle section is constructed in a special way. But the circuits round the two turning points can be increased or decreased in pairs.

The Baltic Wheel

The Baltic Wheel

The Baltic Wheel with two less circuits:

The downscaled Baltic Wheel

The downscaled Baltic Wheel

The Wunderkreis has a double spiral in the middle section. The double spiral can have more or less windings (not shown here). But the typically “labyrinthine” circuits round the two turning points can be influenced as mentioned above.

The Wunderkreis

The Wunderkreis

The Wunderkreis with two less circuits:

The downscaled Wunderkreis

The downscaled Wunderkreis

In the quoted statements I would like to show that there is a “technology” through that one can influence the size of a labyrinth.

Related Post

Read Full Post »

When I dealt with the Knossos labyrinth it has struck me that the seed pattern can be simplified very easily. It can be reduced to three lines and two dots. To draw the labyrinth they are connected just as we do it for the classical labyrinth. For more information please see the Related Posts below.

Now this seed pattern with the two turning points can be extended in a very simple way, just by adding more lines in pairs.
seed pattern

The bigger labyrinths have more circuits, however, maintain her basic structure. And, nevertheless, these are own types, because they have another path sequence than the 7-, 9-, 11-, 15- etc. circuit  classical labyrinths. But they are not known, neither among the historical, nor among the contemporary labyrinths. Because they are too easy? Besides, the lines have quite a special rhythm. A closer look can be worthwhile.
The 3 circuit labyrinth of this type first appeared about 400 B.C. on the silver coins of Knossos:

The Labyrinth Type Knossos

The Labyrinth Type Knossos

The circuits are numbered from the outside inwards from 1 to 3. The center is marked with 4. The blue digits labels the circuits inside out. The path sequence is 3-2-1-4, no matter which direction you take. Through that a special quality of this labyrinth is also indicated: It is self-dual.

What now shall be the special rhythm? To explain this, we look at a 5 circuit labyrinth of this type:

The 5 circuit Knossos Labyrinth in the Cretan Style

The 5 circuit Knossos Labyrinth in the Cretan Style

The path sequence is: 5-2-3-4-1-6. At first I circle around the center (6) on taking circuit 5. Then I go outwardly to round 2, from there via the circuits 3 and 4 again in direction to the center, at last make a jump completely outwards to circuit 1, from which I finally reach the center in 6.


Here a 7 circuit labyrinth in Knidos style:

7 circuit Labyrinth in Knidos style

7 circuit Labyrinth in Knidos style

The path sequence is: 7-2-5-4-3-6-1-8. It is also self-dual. The typical rhythm is maintained, the “steps” are wider: From 0 to 7, from 7 to 2, and finally from 1 to 8 (the center).

Here a 9 circuit labyrinth in circular style:

9 circuit Labyrinth in circular style

9 circuit Labyrinth in circular style

The path sequence is: 9-2-7-4-5-6-3-8-1-10. The step size is anew growing. This labyrinth is self-dual again.

This example exists as a real labyrinth since the year 2010 on a meadow at Ostheim vor der Rhön (Germany):

9 circuit Labyrinth in circular style at Ostheim vor der Rhön (Germany)

9 circuit Labyrinth in circular style at Ostheim vor der Rhön (Germany)

To finish we look at a 11 circuit labyrinth in square style:

11 circuit Labyrinth in square style

11 circuit Labyrinth in square style

The path sequence is: 11-2-9-4-7-6-5-8-3-10-1-12. And again self-dual.

I think, the method is clear: We add two more lines more and we will get two circuits more. So we could continue infinitely.
The shape of the labyrinth can be quite different, this makes up the style. The path sequence shows the type. And for that kind of labyrinth we always have only two turning points.

Related Posts

Read Full Post »

Older Posts »

%d bloggers like this: