Pseudo Single Barrier

As was the case with double-barriers, we can also distinguish real from pseudo single-barriers (see: related posts, below). Here I want to show this first with the examples of two non-labyrinthine figures. I start with the figure „Luan“ (fig. 1).

Figure 1. Figure Luan
Figure 1. Figure “Luan” 

Source: Kern, fig 604, p. 285

This is a recent sand drawing of the Stone Age culture on Melanesian island Malekula (Vanatu). Kern writes, that this figure is not a labyrinth and cannot not even with any sound justification be considered misinterpreted labyrinth (Kern, p. 285). It is made-up of a uninterrupted line without entrance or center. However, it has 4 axes and 5 circuits. 

In fig. 2, left image, I show a simpler version of it with only 3 circuits. This better illustrates the principle of its design. This figure clearly can be read as an uninterrupted Ariadne’s Thread, and therefore I have drawn it in red. Of course, we can also add the representation with the walls delimiting the pathway (right image, blue). As can be seen, this figure has a certain similarity with a labyrinth. The axes are formed by the same turns of the pathway that typically appear in the labyrinth of Chartres and many other types of labyrinths. 

Figure 2. Figure Luan, Reduced to 3 Circuits
Figure 2. Figure “Luan”, Reduced to 3 Circuits

In figure 3, I have redrawn the figure from fig. 2 and reduced it to 2 axes. The left (red) image shows the representation with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway. Still, the Ariadne’s Thread is a uninterrupted line without entrance or center. Here we can see the special course of the pathway at the side axis. The two turns of the path are shifted one circuit against each other. In between, an axial piece of the pathway is inserted where the path changes from the first to the third circuit without changing direction. Analogically with the double barriers we can term these courses single barriers. The course of the pathway in figure 2 is a real, the one in fig. 4 a pseudo single barrier (see related posts, below). 

Figure 3. Redrawing with 2 Axes and Pseudo Single Barriers
Figure 3. Redrawing with 2 Axes and Pseudo Single Barriers 

This figure can easily be transformed to a labyrinth with 2 axes and 3 circuits, as shown in fig. 4. The left (red) image shows the representation of the labyrinth with the Ariadne’s Thread, the right (blue) shows the representation with the walls delimiting the pathway. 

Figure 4. Labyrinth with 2 Axes and 3 Circuits
Figure 4. Labyrinth with 2 Axes and 3 Circuits

As far as I know, the pseudo single-barrier has appeared in two historical labyrinths (fig. 5). The left image shows the pavement labyrinth in Ely Cathedral with 5 axes and 5 circuits. The pseudo single-barrier is situated at the second axis where the path changes from the fourth to the second circuit without changing direction. The right image shows the third out of 8 labyrinth drafts by the clergyman Dom Nicolas Rély. This labyrinth, that I called Rély 3, has 9 axes and 5 circuits. The axes are designed as real (axes 1, 2, 4, 6, 8) and pseudo (axes 3, 5, 7) single-barriers.

Figure 5. Historical Labyrinths with Pseudo Single Barriers
Figure 5. Historical Labyrinths with Pseudo Single Barriers

Sources: Ely – Saward, p. 115; Rély 3 – Kern, fig. 457a, p. 241.

References:

  • Kern H. Through the Labyrinth: Designs and Meanings over 5000 years. London: Prestel 2000. 
  • Saward J. Labyrinths & Mazes: The Definitive Guide to Ancient & Modern Traditions. London: Gaia 2003.

Related Post:

2 thoughts on “Pseudo Single Barrier

  1. Pingback: The Luan Labyrinth | blogmymaze

  2. Pingback: Labyrinths with Pseudo Single-Barriers  | blogmymaze

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.